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Abstract. Finding differentially regulated subgraphs in a biochemical
network is an important problem in bioinformatics. We present a new
model for finding such subgraphs which takes the polarity of the edges
(activating or inhibiting) into account, leading to the problem of finding
a connected subgraph induced by k vertices with maximum weight. We
present several algorithms for this problem, including dynamic program-
ming on tree decompositions and integer linear programming. We com-
pare the strength of our integer linear program to previous formulations
of the k-cardinality tree problem. Finally, we compare the performance
of the algorithms and the quality of the results to a previous approach
for finding differentially regulated subgraphs.

Keywords: Linear programming · k-cardinality tree · Tree decomposi-
tion · Heuristics · Bioinformatics · Gene regulation

1 Introduction

1.1 Problem Definition

We are considering the following problem: given a simple graph G = (V,E), edge
weights w : E �→ R, and an integer k ∈ {1, . . . , |V |}, find a subset V ′ ⊆ V of k
vertices (i.e. |V ′| = k) such that the subgraph induced by V ′ is connected and
has maximum total edge weight (i.e.

∑
e∈E∩(V ′×V ′) w(e) is maximized). We call

this the maximum weight connected k-induced subgraph (Mwcis) problem. If
connectivity is not required, we refer to it as the Mwis problem. Both problems
are easily seen to be NP-complete by a reduction from the Clique problem.

There are several variants of this problem. We can have vertex scores only
or additionally (i.e. the weight-function is

∑
e∈E∩(V ′×V ′) w(e) +

∑
v∈V ′ s(v)), or

we can sum the weights of all edges with at least one endpoint in V ′ (i.e. the
weight-function is

∑
e∈E|e∩V ′ �=∅ w(e)).

Notice that the latter can be solved with the induced edge-weight objective
and additional vertex scores by setting s(v) =

∑
uv∈E w(u, v) and flipping the

sign of all edge weights. As all our algorithms are capable of handling vertex
scores, we restrict to the induced edge-weight objective unless stated otherwise.
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1.2 Application to Bioinformatics

The motivation for our work comes from bioinformatics, where interactions
between biochemical entities (proteins, metabolites, DNA, ...) are often repre-
sented as graphs named biochemical networks. An important application of such
networks is the detection of differentially regulated (or deregulated) pathways or
subnetworks, where we are asked to determine which parts of the network react
most drastically upon environmental changes, or changes of the phenotype. To
this end, we are given a biochemical network and a set of quantitative mea-
surements for each vertex as a function of the environmental change or the
phenotype. Typically, the vertices represent proteins, and the quantitative data
comes in the form of expression values. An exemplary study might, for instance,
want to determine which subnetworks are significantly activated or deactivated
as a result of a certain type of cancer. Hence, the input would consist of a bio-
chemical network representing the current knowledge on protein interactions in
humans, as well as of measured expression values for a number of patients and
a healthy control group.

Detecting deregulated subgraphs requires a measure of deregulation for a
subnetwork. While simple measures, such as the addition of vertex-based expres-
sion values, can be easily established, statistically significant results require much
more elaborate procedures, such as the popular Gene Set Enrichment Analysis
(GSEA) [STM+05] and its variants [DPM+09], which uses careful sampling and
a Kolmogorov-Smirnov test to establish whether the set of expression changes
on the vertices of a given subgraph is of statistical significance. To detect sub-
graphs of interest, one then tries to find connected sets of vertices with maximal
total vertex score, often under additional assumptions, such as the existence of
regulatory cascades, where a single so-called key player controls the regulation
of several downstream genes. The resulting subgraphs are then scored using the
full GSEA procedure to establish their statistical significance.

It has recently been argued that this approach often overestimates the sig-
nificance, as it ignores inconsistencies in the data: interactions can have both a
direction (which can be integrated easily into the procedures described above)
and a polarity, i.e., one vertex can activate or inhibit expression of the other. As
a result of noise both in the network models as well as in the expression data,
expression differences are often inconsistent with the polarity of the interac-
tion. We often find, e.g., cases where two proteins A and B both show increased
expression levels in, say, the diseased sample, even though expression of A is
supposed to inhibit expression of B. GSEA analysis would reward the inclusion
of A and B in a subset of differentially regulated genes, as both are connected
and show a differential regulation. On the other hand, the inconsistency should
instead make us suspicious of their relevance.

To include consistency into the scoring of subnetworks, Geistlinger et al. have
recently proposed the so-called Gene Graph Enrichment Analysis (GGEA) app-
roach [GCK+11], which replaces the vertex-based scores of GSEA with edge
weights which are computed from the expression changes of both vertices inci-
dent to the edge, as well as from its polarity. While this change has been shown
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to lead to improved scoring of subnetworks [GCK+11], previous optimization
approaches to detect the most strongly differentially regulated parts do not
directly apply, as they are based on vertex scores instead of edge weights.

2 Related Work

2.1 Other Approaches for Finding Deregulated Networks

Backes et al. [BRK+11] modeled the problem of finding a deregulated subgraph
differently in two ways. On the one hand, they use a vertex-score function, in
which a vertex has a high score if the corresponding gene is deregulated. They do
not take into account whether the sign of the deregulation is consistent with its
predecessor gene. On the other hand, they consider a directed network, where
the direction indicates the causing and the affected gene. Hence they require
a designated root vertex that corresponds to a key player gene responsible for
deregulation, from which all other vertices are reachable. We will review the
integer linear programming approach by Backes et al. in Sect. 3.1.

ILP approaches for undirected, edge-weighted deregulated networks include
finding paths [ZWCA08] and finding maximum connected subgraphs with vertex
scores (often also called weights). The latter is called the Mwcs problem, which
was solved by transformation into the prize-collecting Steiner tree problem by
Dittrich et al. [DKR+08].

2.2 Similar Problems

Álvarez-Miranda et al. [AMLM13] compared an ILP formulation for the prize-
collecting Steiner tree problem to an ILP formulation of Mwcs and the Backes
approach by polyhedral comparison.

In the related k-cardinality tree problem, one searches for a tree with k
edges that minimizes the sum of all edge weights (sometimes nonnegative) or
vertex scores. ILP Formulations for the k-cardinality tree (and closely related
problems) were given by Fischetti et al. [FHJM94], Garg [Gar96], and Ljubić
[Lju04]. Recent works are by Quintão et al. [QdCM08,QadCML10], which use
the Miller-Tucker-Zemlin constraints [MTZ60], and Chimani et al. [CKLM10],
which compares the approaches by Fischetti et al., Garg, and Ljubić polyhedra-
wise and gives the best separation routine in practice. Approximation algorithms
were given by Blum et al. [BRV99] and Arora and Karakostas [AK00], and for
metaheuristics, we refer to Blum and Blesa [BB05] for a comparison.

Another similar problem is the densest k-subgraph problem (DkS), which is
defined by the average vertex degree of graphs. The average vertex degree of a
simple graph G = (V, E) is defined as ad(G) := 2|E|

|V | . The maximum average
degree of G is defined as the maximum of the average degrees of all subgraphs,
mad(G) := maxH⊆G ad(H). This will appear again later in Sect. 3.3.

Finding the subgraph with maximum average vertex degree, i.e. the densest
subgraph, is computable in polynomial time using flow techniques [Law76]. If the
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subgraph size is restricted to k vertices, the problem is NP-hard by a reduction
from Clique and can be seen as a special case of Mwis with unit weights.

Feige et al. [FKP01] give a polynomial-time algorithm that solves DkS with
an approximation ratio of O(|V |1/3−ε). They show that such an algorithm can be
used to approximate the Mwis problem for nonnegative edge weights with a loss
in the approximation ratio of O(log |V |). Bhaskara et al. [BCC+10] give an algo-
rithm using linear and semidefinite programming relaxations that achieves an
O(|V |1/4+ε)-approximation in polynomial time and an O(|V |1/4)-approximation
in O(|V |log |V |) time. Moreover, it was shown by Khot [Kho06] that under the
assumption that there are no subexponential algorithms for NP-complete prob-
lems, there is no polynomial-time approximation scheme for the DkS problem.

3 Integer Linear Programming Formulations

In all following ILP approaches, there are binary variables yv indicating whether
a vertex v is selected for the subgraph, and binary variables zuv indicating
selected edges for the objective function max

∑
e∈E zew(e). The induced edges

can be modeled by the constraints zuv ≥ yu + yv − 1 and zuv ≤ yu, yv. The
objective where an edge contributes its weight when at least one end vertex is
selected is modeled by zuv ≤ yu + yv and zuv ≥ yu, yv.

3.1 Adapting the Approach by Backes et al.

In the following, we adapt the approach by Backes et al. for the Mwcis problem.
The constraints for the variables yv are adopted from Backes et al. with removal
of the root vertex constraints. The most interesting set of constraints consists
of those enforcing connectivity which is done as follows. We require that for
every set C ⊆ V with |C| < k, at least one adjacent vertex is also selected,
i.e.

∑
w∈In(C) yw ≥ yv ∀v ∈ C ∀C ⊆ V with |C| < k, where In(C) is the set of

all vertices in V \ C with at least one edge incident to a vertex in C.
Instead of generating this exponentially large set of constraints beforehand,

a branch-and-cut procedure is used. The relaxation of the ILP is solved with
the basic constraints, and we search for connected components in the subgraph
induced by the (rounded) fractional solution. If there is more than one connected
component, the corresponding connectivity constraints for every set of vertices
that forms a connected component are added and the solving continues. If there
is one connected component, it constitutes the solution.

3.2 Formulations for the k-Cardinality Tree Problem

The ILP formulation by Fischetti et al. uses binary variables yv for vertices and
buv for spanning edges in the undirected sense. Apart from the straightforward
constraints that ensure k vertices and k−1 spanning edges (see (2) and (3) in the
next section), there are an exponential number of constraints, the generalized
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subtour elimination constraints (Gsec). For every set S ⊆ V with |S| ≥ 2 and
for t ∈ S, the constraint

∑

uv∈E(S)

buv ≤
∑

v∈S

yv − yt (1)

is added to the model, where E(S) denotes the edges induced by S.
The directed cut formulation (DCut) by Chimani et al. transforms the prob-

lem into the k-arborescence problem with binary variables xu,v for the directed
edges and an additional root vertex with directed edges to all vertices.

Both approaches use maximum-flow problems for separation on fractional
solutions. One or more minimum cuts are extracted from the solution and their
corresponding constraints are added to the model. We will introduce a novel
formulation in the next subsection and compare it to the existing approaches.

3.3 A Novel k-Cardinality Tree Formulation Based
on the Maximum Average Degree Problem

We propose a novel formulation with binary variables for vertices and undirected
spanning edges and O(|V | + |E|) constraints. The idea to enforce acyclicity is
that the maximum average degree of a tree of k vertices is 2(k− 1)/k = 2− 2/k,
while a cyclic graph has a maximum average degree of at least two.

The following has been proven by Cohen [Coh10]: For a graph of maximum
average degree z, we can distribute a value of 2 for each edge (the degree gen-
erated by it) to its endpoints, i.e. define continuous edge flow values fuv,u and
fuv,v with fuv,u + fuv,v = 2, such that the total amount assigned to a vertex is
at most z, i.e.

∑
uv∈E fuv,v ≤ z for all v ∈ V . Furthermore, this is not possible

for any value z smaller than the maximum average degree. This leads to the
following mixed integer linear programming formulation, where we use an edge
flow of one instead of two since the model is linear:

Variables

yv ∈ {0, 1} ∀ v ∈ V

be ∈ {0, 1} ∀ e ∈ E

fuv,u, fuv,v ∈ R
+
0 ∀uv ∈ E

Constraints
∑

v∈V

yv = k (2)

∑

e∈E

be = k − 1 (3)

buv ≤ yu, yv ∀uv ∈ E (4)
fuv,u + fuv,v = buv ∀uv ∈ E (5)
∑

uv∈E

fuv,v ≤ 1 − 1
k

∀ v ∈ V (6)
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The integrality constraints ensure that a non-selected vertex v does not receive
any flow because the incident spanning edge variables {buv}uv∈E must be zero
as well and therefore do not generate any flow to v.

However, we can use the stronger constraint
∑

uv∈E fuv,v ≤ (
1 − 1

k

)
yv instead

of (6) to forbid some solutions of the relaxed model that would otherwise be fea-
sible. If a vertex then received less than

(
1 − 1

k

)
yv, the remaining flow could not

be absorbed because of (2) and (3), so we can even write

∑

uv∈E

fuv,v =
(

1 − 1
k

)

yv ∀ v ∈ V. (6a)

In reverse, either (2) or (3) can be dropped if (6a) is added. Furthermore, it
implies the inequality fuv,v ≤ (

1 − 1
k

)
yv for all edges and since we solve buv to

integrality, we can add

fuv,u, fuv,v ≥ 1
k
buv ∀uv ∈ E, (7)

which reduces the amount of possible relaxed solutions even more. We call the
above formulation with the improved constraints the strong Cohen formulation
(Cs).

3.4 Polyhedral Comparison to Existing k-Cardinality Approaches

Chimani et al. have shown that Gsec, DCut and the multi-commodity flow for-
mulation by Ljubić are equivalent and strictly stronger than Garg’s formulation.
To compare two formulations, one compares the polyhedra defined by the con-
straints without integrality requirements. A formulation is said to be stronger
than another if its relaxation gives a tighter upper bound than the other. The
polyhedron of the strong Cohen formulation is

PCs := {(y, b, fu, fv) ∈ [0, 1]|V |+3|E| | (y, b, fu, fv) satisfies (3) − (5), (6a), (7)}
and we denote the identical projection on the (y, b) subspace as proj(PCs).

Likewise, we have the Gsec polyhedron

PGsec = {(y, b) ∈ [0, 1]|V |+|E| | (y, b) satisfies (1) − (3)}.
Lemma 3.1. Gsec and Cs are not comparable.

Proof. Consider the graph with two connected components consisting of three
interconnected vertices each and k = 6. Cs has an LP-solution by setting fuv,u =
fuv,v = 5/12 for every edge uv (Fig. 1), but Gsec is clearly infeasible since for
the set of three vertices in each component, the total value of the induced edges
can be two at most, but all edge variables must sum to five.

On the other hand, consider the graph consisting of a path of three ver-
tices and an isolated vertex, and k = 2. Gsec allows an LP solution with
y = (12 ,

1
2 ,

1
2 ,

1
2 ) by setting the two edge variables to 1

2 (Fig. 2).
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Fig. 1. A Cs LP solution for k = 6 on a graph with six vertices and two connected
components. There are no Gsec and DCut LP solutions for this instance.
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Fig. 2. A graph with four vertices with Gsec (left) and DCut (right) LP solutions for
k = 2. There is no Cs LP solution for this choice of y = ( 1

2
, 1
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2
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2
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Cs has no LP-solution with y = (12 ,
1
2 ,

1
2 ,

1
2 ) because then, the isolated vertex

would have to absorb an edge flow of exactly 1
4 by (6a), but it has no incident

edges to produce it. Note that constraint (7) is not required for this part of the
proof. 	

Theorem 3.2. Cs becomes strictly stronger than Gsec and its equivalent for-
mulations by adding the generalized subtour elimination constraints.

Proof. Add the generalized subtour elimination constraints (1) to the Cs for-
mulation (note that (4) is implied by (1)). We obtain proj(PCs) ∩ PGsec on the
variable space (y, b). By Lemma 3.1, it is a proper subset of PGsec. 	


4 Dynamic Programming on a Tree Decomposition

Trees have many desirable properties: they are sparse, connected acyclic graphs
that decompose into smaller trees when an edge or a vertex is removed. This
often allows us to consider separated subproblems in a dynamic programming
algorithm.

The tree decomposition and treewidth of a graph generalize this concept.
A good introduction can be found in Kleinberg and Tardos [KT05]. Graphs
similar to a tree have small treewidth and many NP-complete become tractable
for graphs with bounded treewidth.
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Definition 4.1. Let G = (V, E) be an undirected graph. A tree decomposition
(T, {Vt}t∈T ) consists of a tree T on a set of vertices different from V , which we
will call nodes to avoid confusion, and a subset Vt ⊆ V for every node t ∈ T ,
which is called bag (or piece). The following properties must be satisfied:

1. (Node coverage) Every vertex v ∈ V belongs to at least one bag Vt.
2. (Edge coverage) For every edge {u, v} ∈ E, at least one bag Vt contains u

and v.
3. (Coherence) Let t1, t2, t3 ∈ T where t2 lies on a path from t1to t3. Then, if a

vertex v ∈ V belongs to both Vt1 and Vt3 , it also belongs to Vt2 .

Definition 4.2. The width of a tree decomposition (T, {Vt}t∈T ) for a graph G
is defined as tw(T, {Vt}) = maxt |Vt| − 1.

The treewidth of G, denoted by tw(G), is the minimum width of all tree
decompositions for G.

Deciding whether a graph has treewidth k is NP-complete, but solvable in linear
time if k is constant [Bod96].

It is useful to introduce a special type of tree decomposition which is the
analogue of a rooted binary tree:

Definition 4.3. A tree decomposition (T, {Vt}t∈T ) for a graph G is nice if

1. There is a root r ∈ T .
2. Every node t has at most 2 children.
3. If a node t is a leaf, then |Vt| = 1.
4. If a node t has exactly one child t′, then Vt and Vt′ differ by exactly one vertex.

If |Vt| = |Vt′ | + 1, then t is called an introduce node, and if |Vt| + 1 = |Vt′ |,
then t is called a forget node.

5. If a node t has exactly two children s and x, then Vx = Vt = Vs, and t is
called a join node.

Any tree decomposition can be refined into a nice decomposition with the
same treewidth with a linear addition of nodes.

We now describe a dynamic programming algorithm on nice tree decompo-
sitions for the Mwcis problem. The algorithm is similar to those for the (prize-
collecting) Steiner tree problem and the k-cardinality tree problem as proposed
by Chimani et al. [CMZ12]. The key idea is to build the solution bottom-up
(leaves to root) on tables tabi for every bag i of the (nice) tree decomposition.
Each table holds all possible sub-solutions for the vertex set of its bag. Since
the treewidth is bounded, so is the size of every bag and exponentials become
constants. An efficient encoding scheme for the solutions is used to save runtime
and memory. Given a tree decomposition of width tw, the algorithm for the k-
cardinality tree problem runs in O(B2

tw+2(tw + k2)|V |) time where Bi denotes
the i-th Bell number.

For our problem, consider an undirected graph G = (V, E) and a nice tree
decomposition (T, {Vt}t∈T ) rooted at r ∈ T . The dynamic programming algo-
rithm computes bottom-up a table W (t,P, a) of values for each node t ∈ T and
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a configuration (P, a): Let P be an arbitrary partition of a subset of Vt, P =
{P1, ..., Pl}, then W (t,P, a) is the maximum weight of a subgraph induced by a

vertices in connected components V1, ..., Vl ⊂ Vt such that Pi = Vi ∩ (
⋃l

j=1 Pj).
The maximum of W (t,P, k) for t ∈ T and P containing a single set is the

value of the maximum connected induced subgraph. An entry W (t,P, a) is com-
puted bottom-up from the children of t in the following way.

Leaf node. Let t be a leaf node with Vt = {v}. We create entries W (t, {} , 0) = 0
and W (t, {{v}} , 1) = 0.

Introduce node. Let t be an introduce node with child t′ and {v} = Vt \Vt′ the
vertex which is added. For every W (t′,P, a), create an entry W (t,P, a) =
W (t′,P, a) and W (t,Pv, a + 1) = W (t,P, a) +

∑
uv∈E:u∈⋃P∈P P w(u, v),

where Pv is defined to be the partition P where {v} is added and all sets
adjacent to v are united with {v}.

Forget node. Let t be a forget node with child t′ and {v} = Vt′ \ Vt the vertex
which is deleted. For every configuration (P ′, a) of t′, we set W (t,P, a) to
W (t′,P ′, a) where P is the partition P ′ with v removed from the containing
set, if present at all.

Join node. Let t be a join node with children t1, t2. For every (t1,P1, a1)
and (t2,P2, a2) where P1 and P2 are partitions of the same subset, set
W (t,P, a1 +a2 −#P1) to W (t1,P1, a1)+W (t2,P2, a2) where P is the parti-
tion obtained by uniting all subsets U1, U2 of P1 such that there exist u1 ∈ U1

and u2 ∈ U2 that are in a common set in P2, and #P1 denotes the total
number of vertices contained in the partition P1.

5 Heuristics

5.1 Vertex Score Heuristic

Edge-weights can be approximated by vertex weights. This needs less variables in
the ILP formulations and often speeds up the computation significantly. Setting
s(v) = 1

2

∑
uv∈E w(uv) for a vertex v is a compromise between the induced

weight objective and the objective which counts every edge where at least one
incident vertex is selected.

5.2 A Greedy Heuristic

Our simple greedy heuristic grows the subgraph as one connected component,
starting with a source vertex s ∈ V . The next vertex to be added is chosen in
a greedy manner until k vertices have been found. This procedure is started
once in every vertex to ensure the whole graph is explored. This does not
yield the optimal result in general. A similar algorithm was given by Fischetti
et al. [FHJM94].
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5.3 Simulated Annealing

Simulated annealing is a local search procedure capable of escaping from local
optima. In every iteration, the current solution is changed a little. This change
is accepted with some probability depending on the difference in the objective
values and a gradually decreasing virtual temperature.

Simulated annealing has been used in similar problems for finding subnet-
works in regulatory networks [IOSS02]. For our problem, we start the simulated
annealing algorithm with an arbitrary connected subgraph with k vertices. In
every iteration, one randomly chosen vertex is removed. Then, a vertex adjacent
to any of the remaining vertices is chosen randomly and added to the subgraph.
We evaluate this new subgraph and accept the change depending on the eval-
uation difference to the previous subgraph and the current temperature. If the
change is not accepted, it is reverted. It is easy to see that full search space is
maintained (assuming the graph is connected) because there is always a sequence
of changes that leads us to any given connected k-induced subgraph.

5.4 Heuristic Based on the Tree Decomposition Approach

Even though the treewidth of our input graphs is too large to use our algorithm
based on the tree decomposition, we can use it in a heuristic: we create a large
subgraph of the input with small treewidth and solve the problem on this graph.
We compute a subgraph of small treewidth in a Kruskal-fashion: we add the
edges in the order of decreasing weight as long as the treewidth stays small. As
we have to compute the treewidth |E| times, we use a heuristic to compute it.

We note that with this heuristic, we find much better subgraphs of small
treewidth as in the approach by Fix et al. [FCBZ12].

6 Experiments

6.1 Benchmark Setting and Input

We performed tests on a real-world graph arising in the study of regulatory net-
works (6270 vertices, 8650 edges). This graph was formulated by the integration
of the Reactome pathway knowledgebase [CMH+14]. This open-data resource
for human biochemical interactions is a widespread analysis tool in which each
vertex represents an encoded gene, protein or chemical compound, and each edge
represents a directed biochemical interaction. Furthermore, we conducted tests
on randomly generated Erdős-Rényi graphs with |V | = 3, 000 and |E| = 10, 000
and edge weights from a normal distribution.

The tests were carried out on an Intel Core 2 P8600 CPU with 8 GB DDR3-
RAM. The tree decomposition algorithm was implemented in C++ using the
TreeD library [Sub07]. All other algorithms were programmed in Java 7 [Ora12].
The integer linear programs were solved using Gurobi 5.6 [Gur14], which is free
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for academic purposes. The solution of the greedy heuristic was given as an
initial feasible solution for the ILP solvers, which provides them with a lower
bound to the optimum value.

The strong Cohen formulation (Cs) for which the results are shown did not
include Gsec or equivalent constraints. A näıve implementation of the DCut
separation did not improve performance for our instances. However, according to
Chimani et al. [CKLM10], advanced techniques to extract more minimum cuts
from the maximum flow problem can significantly speed up the computation.

The simulated annealing algorithm was run for 100, 000 steps per instance.

6.2 Quality of Solutions

We compared the objective values obtained by the different algorithms for our
real-world graph. Here, we also included edges where one endpoint is chosen
for the subgraph. The results are shown in Fig. 3. The tests run on randomly
generated graphs showed similar results.

Fig. 3. Quality results of heuristics for an edge-weighted real-world graph.

To assess the biological reliability of the algorithms, we modeled an optimal
biological subgraph with 15 vertices into our real-world graph. In this subgraph,
the polarity (activation and inhibition) of each edge as well as its corresponding
vertices were designed such that they represent a consistent biological process.

Additional instances of this modified graph were generated which exhibit
several levels of additive Gaussian noise. We analyzed how well the optimal
biological subgraph could be recovered from these instances. As a result, our
model outreaches Backes et al. and identified more vertices in the graph for
all noise levels with the induced edge weight objective (Fig. 4). Objectives that
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Fig. 4. Number of correctly identified genes (of 15) for k = 10 (left) and k = 15 (right)
for different levels of additive Gaussian noise, averaged over three runs.

include not only induced, but all incident edges exhibit the problem that the
algorithm can collect weight from crucial vertices without selecting them.

6.3 Performance Results

The benchmark results show that the integer linear programming based algo-
rithms can compete with the greedy heuristic and simulated annealing for small
values of k, but their runtimes increase quickly with the subgraph size (Fig. 5)
and for worse data. The tree decomposition algorithm was generally fast for a
treewidth bound of five, and its runtime is more predictable. Note that the time
to build the tree decomposition with a heuristic is negligible for this bound.

Our new integer linear program performed better than the one adopted from
Backes et al. for k ≥ 25 with the edge-weight objectives, which was confirmed
on the randomly generated instances. Both ILP approaches needed up to several
gigabytes of RAM to solve with Gurobi, where the Backes approach usually
needs more space. The space and time needed for the dynamic programming
algorithm heavily depends on the treewidth bound. For a treewidth bound of
five, the algorithm produced good results in minutes while needing less than
200MB of memory. For a treewidth bound of ten, it needed 5 GB, several hours,
and the results improved just slightly.

The vertex-score integer linear programs were often faster than their edge-
weight counterparts because they need less variables and constraints.
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Fig. 5. Performance results of different approaches for an edge-weighted real-world
graph.

7 Conclusion and Outlook

We defined a new model to compute deregulated subgraphs in a regulatory
network, based on the GGEA concept introduced by Geistlinger et al. [GCK+11],
that results in finding a connected induced subgraph of maximal weight.

Several algorithms were tested on the model, including a novel mixed integer
linear programming method and an algorithm based on tree decompositions.
The linear program can be combined with previous ILP approaches to get a
stronger formulation, which will be addressed in future implementations. Due
to immense treewidths of regulatory networks, the tree decomposition algorithm
uses a heuristic, which initially identifies a subgraph with large weight and small
treewidth. The new model yields better results than the previous approach by
Backes et al. [BRK+11], as the polarity of the edges is taken into account. Our
algorithms showed better performance than the adaption of the Backes approach
for undirected graphs for large subgraph sizes.
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