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Fast Algorithms for Pseudoarboricity

Markus Blumenstock*

Abstract

The densest subgraph problem, which asks for a subgraph
with the maximum edges-to-vertices ratio d*, is solvable in
polynomial time. We discuss algorithms for this problem
and the computation of a graph orientation with the lowest
maximum indegree, which is equal to [d*]. This value also
equals the pseudoarboricity of the graph. We show that it
can be computed in O(|E|*/?y/loglog d*) time, and that bet-
ter estimates can be given for graph classes where d* satisfies
certain asymptotic bounds. These runtimes are achieved by
accelerating a binary search with an approximation scheme,
and a runtime analysis of Dinitz’s algorithm on flow net-
works where all arcs, except the source and sink arcs, have
unit capacity. We experimentally compare implementations
of various algorithms for the densest subgraph and pseu-
doarboricity problems. In flow-based algorithms, Dinitz’s
algorithm performs significantly better than push-relabel al-
gorithms on all instances tested.

1 Introduction

1.1 Preliminaries and Problem Definition Let
G = (V, E) be a simple, finite graph with V' # 0. We
will refer to this type of graphs as simple graphs or
graphs throughout the paper. For asymptotic estimates
we assume that |E|] € Q(|V]), as isolated vertices are
not of interest. The average density of a subgraph
H = (Vig,Eg) C G is defined as

En
d(H) = |VH||

An (induced) subgraph with maximum average density
is called a densest subgraph of G. We will denote the
maximum average density by d*(G) and the maximum
vertex degree by A(G). We write d* and A where the
graph is clear from context.

The value [d*] has interesting connections to other
concepts in combinatorics, as Theorem 1.1 shows. Ar-
boricity (pseudoarboricity) is the minimum number of
forests (pseudoforests) into which the set E can be de-
composed. In a pseudoforest, every connected compo-
nent is a pseudotree. A pseudotree of n vertices is con-
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nected and has at most n edges: it contains one cycle
at most.

THEOREM 1.1. (PICARD AND QUEYRANNE [1]) Let G
be a simple graph. For the pseudoarboricity P(G), we
have P(G) = [d*(G)] and for the arboricity T'(G), we
have T'(G) € {[d*(G)], [d*(G)] + 1}.

1.2 Related Work

The Densest Subgraph The first algorithm for
the densest subgraph, based on network flow formu-
lations, is due to Lawler [2, Chapter 4]. Picard
and Queyranne [1] give an approach based on solv-
ing |V| flow problems. Goldberg [3] solves the prob-
lem (and weighted generalizations) with a parameter-
ized flow network. Up to log|V| maximum flow com-
putations are performed on the original graph, which
is augmented with source and sink arcs, in a bi-
nary search for the value d*. With the Goldberg-
Rao algorithm [4] for integral capacities (the value
d* is a rational number), it can be made to run in
O(B| min(y/TE, [V[*/3) log(|V /| E]) log? | V).

The algorithm by Gallo et al. [5] solves paramet-
ric flow problems. The authors apply it to Gold-
berg’s network. The total running time is bounded
by O(|V||E|1log(|V|?/|E|)), but the algorithm does not
generally benefit from improvements of maximum flow
algorithms.

Chen [6] solves the problem (and a weighted gener-
alization) as a flow problem on a parameterized bipartite
graph. Cohen [7] formulates a linear program for deter-
mining d*, which describes a flow problem on the same
parameterized bipartite graph. Charikar [8] also formu-
lates a linear program for determining d* and addresses
the density problem in directed graphs. Khuller and
Saha [9] propose a flow-based algorithm for the directed
case, which again involves a binary search.

Georgakopoulos and Politopoulos [10] generalize the
problem to set-systems. For the case of simple graphs,
their method is essentially equivalent to Goldberg’s.
However, they show that after an unsuccessful test,
some vertices may be removed from the flow network.
While the authors could not prove how this affects the
runtime, they expect practical performance to be faster
by a factor of about ©(log|V|). They also propose a
parameterized linear program for weighted set-systems.
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Several researchers describe a greedy algorithm that
returns a 2-approximation for d* in O(|V|+|E|) [11, 12,
13, 14, 8, 15, 10]. Georgakopoulos and Politopoulos [10]
describe a generalization to set-systems, Khuller and
Saha [9] address the case of directed graphs.

The densest subgraph problem has several applica-
tions, see e.g. [10, 16, 17].

Pseudoarboricity and Arboricity Determining
arboricity and pseudoarboricity are special cases of the
covering problem for matroid sums. The first matroid
partitioning algorithm is due to Edmonds [18]. Gabow
and Westermann [19, 20] propose algorithms specifically
for arboricity and pseudoarboricity, the one for the
latter runs in O(|E|min(y/|E[log [V, (|V]log |V])?/3))
time, being the currently fastest known algorithm.
Gabow [21] shows that the arboricity of a graph can
be computed in O(|E|*/?1log(|V|?/|E|)).

Venkateswaran [22] proposes an O(|E|?) algorithm
for finding an orientation of the graph where the max-
imum indegree is lowest. This number is equal to [d*]
and thus to pseudoarboricity [23, 13, 24]. Kowalik [24]
presents an approximation scheme for [d*] which runs
in O (|E|log|V|max{1,logd*}/e) time and returns an
orientation where the maximum indegree is at most
[(1+e€)d*] for e > 0. Again, it involves a binary search
and a parameterized flow problem on a network with
integral capacities, which is solved using Dinitz’s algo-
rithm. The key idea is that the length of the shortest
augmenting path can be bounded by a function that
involves the desired approximation quality.

Asahiro et al. [25] propose a (2 — 1/[d*])-
approximation algorithm for weighted graphs which
runs in O(|E|?) time. They also propose an exact flow-
based algorithm for the unweighted case which runs in
O(|E|*/?1og d*) time. They use the analysis of Even and
Tarjan for unit capacity networks [26]. Essentially the
same algorithm is proposed by Bezdkova in unpublished
work [15], and Aichholzer et al. [13] claim the same run-
time on a parameterized bipartite flow network, without
giving details.

Arboricity is a frequent measure of graph density.
Low indegree (or outdegree) orientations have several
applications. Refer to [24] for an overview.

1.3 Contributions

e We generalize the runtime analysis of Dinitz’s al-
gorithm for unit capacity networks [26] to ‘almost
unit capacity networks’. This analysis is applied to
Goldberg’s method for an improved runtime bound
(Corollary 3.1).

e We show new runtime bounds for the pseudoar-
boricity problem (Theorem 1.2). Slightly better
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bounds may be found in certain cases, these are
omitted for clarity. All bounds but one are achieved
by accelerating a binary search with an approxima-
tion scheme (Section 3.3). The remaining bound is
achieved with Gabow’s algorithm for arboricity af-
ter a fast preprocessing of the graph (Section 6).
We also discuss the application of a recent maxi-
mum flow algorithm by Madry [27] in Section 4.

o We implement several algorithms mentioned in Sec-
tion 1.2 for the density and pseudoarboricity prob-
lems, and compare them in a benchmark. To the
best of our knowledge, this is the first experimental
comparison performed for this problem.

THEOREM 1.2. Pseudoarboricity and a corresponding
partition into pseudoforests can be computed in the
runtime bounds stated in Table 1.

2 Bounds for Graph Density

Bounds can be of theoretical and practical value, e.g. in
a binary search. A trivial lower bound for d* is |E|/|V|
(by considering the whole graph as a subgraph), and a
trivial upper bound is |E|. In the following, we prove
better upper bounds, which we will refer to later.

LEMMA 2.1. For a simple graph G = (V,E) and a
densest subgraph H = (Vy, Eg) C G, we have

/ 1 1
Vil > 1/2|FE -+ —.
Vi | > |H|+4+2

Proof. It |E| = 0, the claim is immediate. If |E| > 1,
any densest subgraph must contain at least two vertices.
A subgraph with |Vy| vertices cannot have more edges
than the complete graph on |Vg| vertices, thus we have
|Er| < (|Vu|? = |Vu|)/2. The claim follows by solving
for |Vg|. O

PROPOSITION 2.1. For a simple graph G = (V, E), we

have 1
a(G) < (\/8|E\ T1- 1) .
Proof. For a densest subgraph (Vg, Fy), we have by

Lemma 2.1

_ [Bnl _ Bl

Vil =\ J2lBnl+ 1+

d*

(VEEaT+1-1)

B~ =

Si(\/SIEIﬁfl),

where we use the fact that z/(\/2x+1/4 + 1/2) =
(vV8z+1 —1)/4 for all x > 0, which can be easily
verified. O

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.



Downloaded 01/18/16 to 134.93.143.123. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Table 1: New runtime bounds for the pseudoarboricity problem, depending on d*. Here, log* denotes the iterated

logarithm in base 2.

Bound for d* Runtime Claim No.
o (VIE) O (|B*/?) (0)
- O (|E|?/?/Toglog d¥) (I)
E * 7%
ot O (|E[*/?og" d*) (1)
\/|E
o 1og2|V|> O (|EP?) (I11)
oglo 2/3 * ‘
O %) O (|E|(|V]loglogd*)2/3)  (IV)
2/3 % g%
o ({) O (|B|IV[*/% log" d*) (v)
2/3
o (L) O (|E||V[2/?) (VI)

The bound from Proposition 2.1 is better than the
arboricity bound

(2.1) r < [VIE2+ V4]

by Chiba and Nishizeki [28, Lemma 1], which is also a
bound for pseudoarboricity by Theorem 1.1. The bound
I' < [|V]/2], which the authors derive from (2.1), can
be improved to d* < A(G)/2.

PROPOSITION 2.2. For a simple graph G = (V, E), we
have d*(G) < A(G)/2.

Proof. Consider a densest subgraph H = (Vy, Ep) of
G. Let degy(v) denote the number of vertices in Vg
adjacent to v € V.

Assume that d* = % > %. We obtain
Vil A Y ,ev, deg(v)
FE > LS
|Bu| > —5— = 2
de v
> Zvev B
a contradiction. O

An alternative proof of Proposition 2.2 utilizes the LP
given by Cohen [7]. It can be found in Appendix A.

Gabow and Westermann [20, Lemma 4.1] provided,
by considering matroid sums, bounds for arboricity and
pseudoarboricity, the latter being

P@) < u (VBIBT—7+ 3)J

for |[E| # 0. This bound is slightly tighter than the
bound in Proposition 2.1 after adding one to account for
the ceiling function in P(G) = [d*(G)]. However, the
methods employed in our proof are more elementary and
the bound is tight for density as it holds with equality
for complete graphs.
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3 Almost Unit Capacity Networks

3.1 Preliminaries and Capacity Reduction We
assume familiarity with flow problems. We will call
vertices of a flow network nodes and directed edges arcs
to avoid confusion. However, these often correspond to
vertices and edges of the graph we are concerned with,
so V and E will be used in the analysis.

DEFINITION 3.1. (AUC, AUC-2) Let G = (V,E) be a
directed graph and let N = (VU{s,t}, EU EsU Ey, c) be
a flow network (“G-network”) with

E,C{s}xV, E,CV x{t}, c: EUE;UFE; — N.

N is called an almost unit capacity (AUC) G-network
if c(u,v) <1 for all (u,v) € E. If merely c(u,v) < 2
holds, N is called an AUC-2 G-network.

We consider nonexistent arcs to have zero capacity and
assume that no parallel arcs are present since they can
be merged into a single arc. The definition of AUC-
2 networks will be needed in the following section as
residual networks of AUC networks can have capacities
of two per arc. We now prepare the reduction of large
source and sink arc capacities.

LEMMA 3.1. Let N be a flow network. There exists a
mazimum flow f in N with

f(s,v), f(v,t) > F, := min(c(s,v), c(v,t))

forallv € V. Let N’ denote a copy of N with capacities
d(s,v),c (v,t) reduced by F, for v € V. A mazimum
flow in N’ plus the flow F, on the paths s — v — t is
one such flow f.

Intuitively, this means that one should send as much
flow as possible on the length-2 paths s — v — t. The
proof can be found in Appendix B.
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ProprOSITION 3.1. Let N be an AUC-2 G-network for
a directed graph G = (V, E), where source and sink arc
capacities are bounded by a polynomial in |V |. The max-
mmum flow can be found by running a linear-time pre-
processing algorithm and invoking any mazimum flow
algorithm on the obtained AUC-2 G-network N with
bounded total source and sink arc capacities C’M(N) <

2|E| and bounded mazimum flow M(N) < |E|.

Proof. We subtract the value F,, as defined in Lemma
3.1 from ¢(s,v), c(v, t) for every v € V to obtain ¢’ (with
other capacities adopted without change).

Since for every v, at least one of these two arcs now
has zero capacity, every flow-carrying path s ~» v ~~ ¢
must pass through vertices in V' \ {v}. Thus, the flow
s — v is bounded by outdeg(v) and the flow v — ¢ is
bounded by indeg(v).

For any vertex with ¢/(s,v) > outdeg(v) we can now
safely set ¢(s,v) = outdeg(v) for all v € V. Likewise, for
v with ¢/(v,t) > indeg(v) we can set é(v,t) = indeg(v)
for all v € V. Other capacities are adopted. Call this
AUC-2 G-network N. Tts total source and sink arc
capacities are

Cst(N) = Z (é(s,v) + é(v, 1))
veV
< Z (outdeg(v) + indeg(v)) = 2|E|.
veV

Moreover, the maximum flow is bounded by |E| since
the cut ({s},V U {¢}) has a capacity of |E| at most.
The capacity reduction takes O(|V| + |E|) time. O

For simple graphs, where |E| is counted in the
undirected way, we obtain the bound M (N) < 2|E| for
AUC-2 networks. For AUC networks, this bound can be
improved to M(N) < |E| by considering the cut (S, S)
where S = {s} U {veV|é(v,t) =0}

We apply these results to an example. For a simple
graph G, Goldberg’s flow network [3] is an example of

a parameterized AUC G-network:

c(s,v) =|E| YweV
c(u,v) =1=c(v,u) Yuv € E
c(v,t) = |E| + 29 — deg(v) YveV.

For some guess g > 0 for d*, the network has
({s}, VU{t}) as a minimum cut if and only if ¢ > d*. By
applying Lemma 3.1 and Proposition 3.1, we obtain a
flow network where the maximum flow value is bounded
by |E| instead of [V||E].

3.2 Dinitz’s Algorithm on AUC Networks We
now investigate how Dinitz’s algorithm [29] performs on
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AUC-2 G-networks. Assume that G is simple. Recall
that Dinitz’s algorithm works in phases. In each phase,
a blocking flow is found. First, we give a generalization
of a proposition by Kowalik [24, Proposition 3], the
proof can be found in Appendix B.

PRrOPOSITION 3.2. Each phase of Dinitz’s algorithm
runs in O(|E|) on an AUC-2 G-network N with bounded
total source and sink arc capacities Cs(N) < 2|E|.

We generalize theorems of Even and Tarjan for unit-
capacity networks [26] to determine runtime bounds for
AUC-2 networks with bounded maximum flow. The
proofs are analogous. They are presented in Appendix
B. A key fact we exploit is that for the maximum flow
value M, we have M < 2|E| < |V|? and thus v M < |V].

LEMMA 3.2. Let N be an AUC-2 G-network with
bounded mazimum flow value 0 # M < 2|E|. For the
zero flow, the (unit) distance | from s to t is at most

z<mm<6'E' (1+V8) |V|>'

M’ VM

THEOREM 3.1. Dinitz’s algorithm runs n
O(|E|min(\/|E],|V|?/3)) time on an AUC-2 G-
network with bounded total source and sink arc
capacities Cs (N) < 2|E]|.

3.3 Faster Algorithms for Pseudoarboricity We
now demonstrate how an approximation algorithm can
be used to narrow a search interval for a binary search
(as in Goldberg’s method, for example). Note that
Bezdkova [15] has suggested such a technique before.

LEMMA 3.3. Let I be an interval of integers, and let
x € I be the minimum value for which some property
holds. Furthermore, let the property hold for all z' € T
with ¥’ > x. Given an approximation d € I for x with
x <d<[(1+d)x]| for some § > 0, a binary search for
x can be realized with O(log(dx)) tests.

Proof. We have d — 1 < (1 + §)z and obtain the
lower bound (d — 1)/(1 + §) < z. The interval
IN{[(d—1)/(1+9)],....d — 1} of integral values for z
that remain to be checked can be shown to have length
L < 26x + 2. See Appendix C for the calculations. [

The greedy approximation algorithm (see Section
1.2) for d* outputs an integral value dg satisfying d* <
dg < 2d*. Tt runs in O(|V| + |E|) time.

COROLLARY 3.1. To compute [d*], Goldberg’s method
can be made to run in

0 (|E\ min (\/ﬁ, |V|2/3) logd*) .
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Proof. Obtain the 2-approximation dg with the greedy
algorithm. Since dg is integral, we have [d*]| < dg <
2d* < 2[d*] = [2[d*]]. By applying Lemma 3.3 with
x = [d*], d = dg and § = 1, performing the bi-
nary search is possible with O(log d*) tests (instead of
log |V|). For every integral guess g, we construct Gold-
berg’s network and reduce capacities by Proposition 3.1.
Then, Theorem 3.1 can be applied for each test. O

Corollary 3.1 is an improvement over previous exact
algorithms based on network flow, or their runtime
estimates (see Section 1.2).

Similarly to Goldberg’s method, the value [d*] can
be found in a binary search on a parameterized ‘re-
orientation’ flow network [24]. This method utilizes a
theorem of Frank and Gydrfas [23, Theorem 1]. The
theorem states that there exists an orientation of a
simple graph such that the outdegree (or equivalently,
indegree) of every vertex is bounded by [d*], and this
value is minimal.

An intuitive explanation of the re-orientation flow
network is as follows: For some tentative integer d, we
try to re-orient an arbitrary given orientation G such
that every vertex has at most d ingoing edges (this is
called a d-orientation). To do so, we add a source with
arcs to every vertex which has more than d ingoing
edges: this vertex has to flip at least indeg(v) —d ingoing
edges (more, if outgoing edges flip as well) to reach level
d. Likewise, we add a sink with arcs from every vertex
with indeg(v) < d to it. These vertices may rise up to
level d by flipping edges.

Formally, we introduce source and sink nodes s, ¢ ¢
V, and define the set of arcs A on V U {s,t} as follows:

(s,v) € A: c(s,v) = indegz(v) — d < indegs(v) > d,
(v,t) € A: ¢(v,t)=d —indegs(v) < indegs(v) < d,

(u,v) € A: c(u,v)=1 S u+vin G

Notice that this network is an AUC network for a
directed graph. Thus an analogue of Corollary 3.1
can be proved. As described in its proof, the greedy
algorithm can be used to narrow the length of the search
interval such that O(log d*) tests suffice. Thus, there is
no need to perform an exponential search as described
by Kowalik [24] to find an initial 2-approximation.
The greedy algorithm also computes a dg-orientation,
however, any orientation can be used for re-orientation.

The following lemma was proved by Kowalik and is
a stronger variant of a lemma by Brodal and Fagerberg
[30, Lemma 2]. It can be further generalized to Lemma
C.1, which can be applied to the densest subgraph
problem.

LEMMA 3.4. ([24, LEMMA 2]) Let G be a d-
orientation of a graph G, and let d > d*(G). Then for
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every vertex v € V, the unit distance in G to a vertex
with indegree smaller than d does not exceed logy, 4+ |V'|.

Kowalik uses this fact to stop a test with Dinitz’s
algorithm after at most |2 + log, . |V|| phases, thereby
turning the re-orientation algorithm into an (1 4 €)-
approximation scheme for [d*]. This is justified since if
d > [(1+ €)d*], we have d/d* > (1 +€), and the length
of the shortest augmenting path increases with every
phase. Otherwise, the initial orientation happened to
be a (1 + €)-approximation.

Finding an integer d such that [d*] < d <
[(1+¢)d*] is now possible in O(|E|log(|]V])/elogd*)
time by a Taylor expansion of In(1 + €) for € > 0.

Note that Kowalik’s scheme never stops the binary
search early as it does not detect when the error e
is undershot; it solely relies on the stopping criterion
derived from Lemma 3.4. Thus, if this criterion is never
met during the execution, Kowalik’s scheme outputs the
optimum solution.

To compute [d*] exactly in general, one could try
to set € = 1/d*, as the algorithm then outputs a d-
orientation where d < [d* 4+ 1] = [d*] 4+ 1. A final test
with Dinitz’s algorithm for d — 1 would allow us to de-
termine the exact value. The runtime is bounded by
O(|E|log(|V|)d* log d* + |E|min(y/|E[, [V|*/3)). Since
we do not know d*, we can use the approximation
d* < dg < 2d* of the greedy algorithm to set a slightly
smaller € = 1/dg. Of course, we can use Theorem 3.1
for the approximation phase as well if d* is large to get
a better runtime bound. Still, this method is in general
not better than the Gabow-Westermann algorithm [20],
which runs in O(|E|min(y/|E[logd*, (|V|logd*)*/3))
time if the greedy approximation algorithm is used be-
forehand. Interestingly, the Gabow-Westermann algo-
rithm needs asymptotically less time than log d* worst-
case Dinitz executions on unit capacity networks. Let
us explore this notion.

We divide the re-orientation algorithm into two (or
more) phases and balance their runtimes. For the first
phase, we start the approximation scheme with some
e > 0. It returns a d-orientation where d < [(1 4 €)d*].
In the second phase, we continue the binary search with
Dinitz’s algorithm on the parameterized flow network,
but use our results: We need O(log(ed*)) tests on the
narrowed interval by Lemma 3.3, and can use a different
analysis (Theorem 3.1), which is beneficial if d* is large.
For the second phase, a different algorithm could be
used (e.g., a different flow algorithm or an entirely
different method such as Goldberg’s). We now prove
six of seven bounds for the main theorem.

Proof (Theorem 1.2, claims (I)-(VI) in Table 1). For
all claims, we initially compute the 2-approximation
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dg greedily in linear time. The values dg and dg/2
will be used to set parameters. However, we will
suggestively call these values d* as this does not change
the runtime estimates asymptotically and simplifies
the presentation. We use ~ to signify the constant
factors when setting parameters. We further assume
that numeric computations are performed to arbitrary
precision, and that d* > 1.

Consider claim (I) in Table 1. Check whether
d* < |V|%%9 (any fixed exponent less than 0.5 would
do). If yes, see the proof of claim (III).

Otherwise, we have d* > |V|%% and therefore
logd* > 0.491og |V|. We set € ~ log(|V])?/d* and thus
the first phase runs in O(]E|d*) time. By Proposition
2.1, this is always in O(|E|*/?).

A binary search on the narrowed search interval now
needs O(log(ed*)) = O(loglog d*) tests by Lemma 3.3.
The re-orientation algorithm (or Goldberg’s) can thus
perform the second phase in time O(|F|*/?loglogd*)
by Theorem 3.1. The Gabow-Westermann algorithm
can perform the second phase in O(|E|*/2y/Toglog d*))
time by setting the parameter for the balanced binary
search used in it appropriately (see [20, Section 4]). The
claim follows.

For claims (II) and (V), assume that either d* €
O(/]E|/log|V|) or d* € O(|V|*/3/log |V ). We run the
approximation scheme in ¢ = 1,...,log* d* — 1 phases!,
each time on the search interval left after the previous
phase, with parameters

_ logd”
~

log log d* log log log d*
~ 22 g~ 22 2
J* s €3 J* )

€1 ) €2
For convenience, define log*"a := log---loga (i times)
and log”’a := a. We prove inductively that for
the interval I; leftover after phase i, we have |I;| €
O(log™*d*) and thus phase i runs in O(|E[>/?) resp.
O(|E||V|?/) time. The induction basis holds as for the
initial search interval Iy, we have |Iy| € O(d*) with the
greedy 2-approximation.

Let the induction hypothesis hold for i—1. In phase
1, we perform Kowalik’s scheme on I;_; with ¢; in

o (|E logA\V\d* loglogx(i—l) d*) '
log™* d*

Thus the phase runs in O(|E[|*/2) resp. O(|E||V|*/?)
time and leaves an interval of length |[;|] €
O(log|I;_1|) = O(log*" d*) by Lemma 3.3. It is impor-
tant to ensure that the hidden constants do not accumu-
late during the iterated process. In the proof of Lemma
3.3, we saw that a multiplicative constant of two and

THere, log* denotes the iterated logarithm in base two.
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an additive constant of two may be introduced when
narrowing the interval. We can divide ¢; by a constant
¢ > 2 to avoid accumulating ever larger constants. After
log™ d* — 1 phases, we have narrowed the search inter-
val to the length of @(log*!°8" %" d*) = O(1). The final
phase consists of a constant number of tests and runs in
O(|E|min(/|E],|V|?/3)) time with the re-orientation
algorithm. Thus claims (II) and (V) are proven.

For claims (III) and (VI), we set ¢ =~ 1/d*.
The first phase clearly runs in time O(|E|*/?) or
O(|E||V|?/?), respectively. — The second phase is
a single test with Dinitz’s algorithm, which takes
O(|E|min(/|E],|V|?/3)). Note that substituting one
log|V| in the bounds on d* with logd* does not pro-
duce a stronger result.

For claim (IV), assume that d* €
O((|V]loglog d*)?/3 /log |V|). One can see from
a case analysis that this is not more restric-
tive than the bound in the table. Choose
e ~ log(d*)/d*. The first phase runs in time
O(|E|log |V |d*) € O(|E|(|V|loglogd*)?/3). The sec-
ond phase runs in time O(|E||V|?/3loglog d*) with the
re-orientation algorithm and in O(|E|(|V'|loglog d*)?/?)
with the Gabow-Westermann algorithm.

Once a [d*]-orientation has been computed, it
can be converted into the optimal pseudoforest par-
tition in linear time [24, Proposition 1]. If [d*] is
known, it is possible to compute a [d*]-orientation in
O(|E|min(y/|E],|V|?/3)) time. This runtime is also
possible with matroid techniques [20, Theorem 3.2]. O

4 Utilizing Madry’s Algorithm

Recently, it was shown by Madry [27] that the maximum
flow problem on unit capacity networks can be solved in
O(|E|'°/7) time. This improves the long-standing time
bound by Even and Tarjan [26]. Madry’s definition of
flow networks allows parallel arcs. We can thus convert
AUC networks into unit capacity networks with parallel
arcs.

THEOREM 4.1. The pseudoarboricity of a simple graph
G = (V,E) can be determined in O(|E|*°/T) time with
Madry’s flow algorithm.

Proof. The proof uses Goldberg’s or the re-orientation
flow network. For Goldberg’s AUC G-network N, we
apply Proposition 3.1 to obtain a flow network N’ where
the total source and sink arc capacities are bounded by
O(|E]). We replace the source and sink arcs in N’ by
parallel unit capacity arcs, i.e. for v € V, we replace
the arc s — v by ¢/(s,v) parallel arcs of capacity one,
and the arc v — ¢ by ¢'(v,t) parallel arcs of capacity
one. Call this flow network NP. The number of unit
capacity arcs in NP is in O(|E|), so the network size
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increases only by a constant factor. A binary search
method with Madry’s flow algorithm runs in O(|E|'%/7)
time. ]

While this improves upon the bounds (0)-(III) in Table
1, we can also speed up the binary search with Kowalik’s
approximation scheme when using Madry’s algorithm if
d* satisfies certain bounds. Note that the bounds (IV)-
(VI) in Table 1 are better if the graph is quite dense.

5 Linear Programs

Charikar [8], Georgakopoulos and Politopoulos [10],
and Cohen [7] propose different linear programming
formulations to compute d*. Cohen’s LP is a relaxation
of the lowest maximum indegree orientation problem:
each edge is fractionally oriented to its two end vertices.
Formally, the LP is given as:

minimize d

(5:2) st d> Y fuvw VoeV
uwveE
(5.3) Juvou + fuvp =1 Vuv € E
Juv,us fuvw >0 Yuv € E
d>0.

It is easy to see that Constraint (5.3) allows us to reduce
the number of variables from 2|E| + 1 to |E| + 1, since
we can substitute fuy . = 1 — fuv,w. This is used in our
LP implementation in Section 7.

It can be shown that a solution to Cohen’s LP is a
maximum flow in Goldberg’s flow problem, where the
guess parameter equals d in the LP solution (Proposi-
tion D.1). Furthermore, Cohen’s LP is a proper subset
of the dual of Charikar’s LP, where Constraint (5.3) is
fuvu+ fuvp = 1. Note that Charikar’s LP has also been
investigated by Balalau et al. [17].

6 Preprocessing: Theory and Practice

In the densest subgraph problem, a vertex can be safely
removed from the graph if its degree is smaller than d*.

LEMMA 6.1. (KHULLER AND SAHA [9, PACE 6]) Let
G be a simple graph. A vertex v with deg(v) < d*(Q)
cannot be in a densest subgraph.

Proof. Assume a vertex v with deg(v) < d* is contained
in a densest subgraph (Vi, Egr). Then G’ = G|V \{v}]
would have a density higher than d* (the calculations
are omitted for brevity). This is a contradiction since
G’ itself is a subgraph of G. O

We can repeatedly remove vertices with Lemma 6.1
without changing the maximum density of the graph.
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LEMMA 6.2. Let d < d*(G) for a simple graph G =
(V,E). Then we can obtain a subgraph G' C G with
d*(G") = d*(G) where deges (v) > d for allv € V in
O(|E]) time.

Proof. We initialize a queue with all vertices whose
degree is less than d, and store the current vertex
degrees in an array. While the queue is not empty, a
vertex u is dequeued. Mark it as removed and decrease
the degrees of all its unmarked neighbors by one. If a
neighbor’s degree falls below d for the first time, add
it to the queue. Once the queue is empty, build the
graph induced by the set of unmarked vertices. The
algorithm’s correctness is obvious from Lemma 6.1. It
runs in O(|E|) time. O

With an approximation algorithm, we can do a fast
preprocessing with Lemma 6.2, which can significantly
reduce the input size. The preprocessed graph is also
possibly more dense. Gabow’s algorithm for arboricity
[21] runs in O(|E|*/?1og(|V|?/|E|)) time, i.e., the log-
arithmic term becomes constant for dense graphs. We
are able to use this to obtain a new runtime estimate.

LEMMA 6.3. Let G = (V, E) be a simple graph. Then a
subgraph G' = (V', E') C G with d*(G") = d*(G) =: d*
and |E'| > |V'|d* /4 can be obtained in O(|E|) time.

Proof. Compute the 2-approximation d* < dg < 2d*
in time O(|E]). Set d := dg/2. We have d < d*.
Obtain the subgraph G’ = (V/,E’) C G from Lemma

6.2 with d in time O(|E|). For every vertex v € V',
deger (v) > d > d*/2. We have

2E'| = ) degg (v) > V' d*/2,
veV’
thus |E'| > |V'| d* /4. O

We are now able to prove that pseudoarboricity can
be determined in O(|E|?/2) time if d* € Q(\/|E]).

Proof (Theorem 1.2, claim (0) in Table 1). If we have
d* € Q(\/|E|), then d* > ¢\/|E| for some ¢ > 0. Obtain
G' = (V',E') from Lemma 6.3, we have

|E'| = [V d" /4 = |[V'|\/|E|c/4 = |[V'|\/|E'| c/4
= |E'| > [V ¢?/16,
and thus |E’| € Q(|V’|?). The arboricity I'(G’) can be
computed in O(|E[*/?) time with Gabow’s algorithm.
By applying Theorem 1.1 we obtain

[d"(@)] +1=2T(G) 2 T(G') = [d"(G")] = [d"(G)] .

Therefore, a single test for I'(G") — 1 suffices to deter-
mine pseudoarboricity (and a corresponding pseudofor-
est partition) in O(]F|>/?) time. See Section 3.3 for
details. O
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7 Experiments

We are not aware of performance comparisons of algo-
rithms for the densest subgraph and pseudoarboricity
problems. However, extraction of densest subgraphs is
a common application. To this end, Tsourakakis et al.
[16] implemented Goldberg’s method and the greedy al-
gorithm. Balalau et al. [17] use Charikar’s linear pro-
gram and the greedy algorithm to find minimal dens-
est subgraphs with small overlap. The authors consider
Goldberg’s method unsuitable for their purposes due to
poor performance; they did not elaborate which flow
algorithm was used.

7.1 Tested Algorithms and Benchmark Setting
We tested binary search methods with maximum flow
algorithms, which were implemented in Java 7 Update
79. We implemented Dinitz’s (D) algorithm and vari-
ants of the push-relabel algorithm. The relabel-to-front
variant (RF) runs in O(|V|?) [31], the highest-label vari-
ant (HL) runs in O(|V|?>/|E|) time [32]. For the high-
est label variant, we added the global relabeling and
gap heuristics [33]. We also extended the highest-label
variant to an algorithm for parametric flow networks as
described Gallo et al. (P-HL) [5], which can be shown
to perform at most O(|V|2\/|E|) nonsaturating pushes
in total [34, Theorem 2.4].

These algorithms are used to determine [d*] with
the methods of Goldberg, Georgakopoulos and Poli-
topoulos, and the re-orientation algorithm from Section
3.3. The latter performs exact computation without
approximation phases. The reason for this is that the
stopping criterion was not met for the parameter choices
in the proof of Theorem 1.2, and thus the approximation
scheme is identical to the exact method. We give more
details on the length of augmenting paths in Section 7.3.

We also implemented the greedy 2-approximation
algorithm, Cohen’s LP, and the parameterized
Georgakopoulos-Politopoulos LP [10] with a binary
search. We used Gurobi 6.0 [35], which is free for
academic purposes, to solve the LPs. We report results
for the dual simplex method, which was consistently
faster and more memory-efficient than the primal
simplex method.

The tests were run on a single core of an Intel i7-
5820K CPU with 3.3 GHz and 64 GB DDR-4 RAM.
The operating system was Ubuntu 14.04 (64-bit). The
algorithms were started with the bounds from Section
2. All tests were repeated with the preprocessing from
Lemma 6.3 to reduce the input sizes.

7.2 Input Graphs We used large simple graphs from
the Stanford SNAP database [36] as input graphs,
namely the Amazon, DBLP, YouTube, LiveJournal and
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Orkut networks with about 900K, 1M, 3M, 35M and
117M edges, respectively.

Even and Tarjan [26] propose a family of flow
networks on which Dinitz’s algorithm needs as much
time as its worst-case runtime estimate. Since our flow
networks do not belong to this family, we propose a
graph family where we expect the shortest augmenting
paths in the corresponding G-networks to become very
long because of a mixture of strongly varying degrees,
local densities, and a large diameter. For n € N, we
define graph G,, as a collection of the complete graphs
K, K, ..., K, where every vertex of K; is additionally
connected to all vertices of K; 41 fori=1,....n—1. G,
has n(n + 1)/2 vertices and (n® — n)/2 edges in total
and an average density |E|/|V]| =n—1¢€ O(\/|[V]). If
n > 2, the vertices in K,,_1 have a degree of 3n—4 in G,
which is the maximum degree A(G),). By Lemma 2.2,
we have d* < 3n/2 — 2 € O(y/]V]), so d* € O(/]V]).
We denote the smallest € > 0 for which the stopping
criterion of the approximation scheme is met by €. We
expect that é(G,,) — 0 as n — oo.

7.3 Results The runtime results of the different ex-
act algorithms are presented in Table 2. Flow-based
methods with Dinitz’s algorithm were fastest on all in-
stances. Dinitz’s algorithm was significantly faster than
the push-relabel variants. We note that with push-
relabel algorithms, the number of relabelings in the most
expensive test in the binary search was sometimes more
than a thousand times greater than in the fastest test.
The highest-label variant performs better than both the
relabel-to-front variant and the parametric extension.

The Georgakopoulos-Politopoulos method, which
removes vertices after unsuccessful tests, is considerably
faster than Goldberg’s on a few instances, but slightly
slower on others. In both the original and the prepro-
cessed instances, an unsuccessful test removes 5-70% of
the remaining vertices. However, there is no known es-
timate of how many vertices can be expected to be re-
moved. It may also happen that all tests but one are
successful; this occurs in the Amazon instance.

Cohen’s linear program is solved considerably faster
than the Georgakopoulos-Politopoulos LP with a binary
search. A comparison between Cohen’s LP and flow-
based methods using the highest label variant is incon-
clusive.

The greedy 2-approximation algorithm needed less
than 8 seconds on all instances, on half of them, it runs
in less than a second. The preprocessing also needs
merely seconds. It reduces the number of edges of the
graphs from the SNAP database by 13 —98% (Table 3).

We report our findings on the augmenting path
lengths in the execution of Kowalik’s scheme in Table
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Table 2: Time (in seconds, rounded) needed to compute the pseudoarboricity of ten different graphs with several
algorithms. The suffix -P denotes instances reduced by preprocessing. The network flow algorithms were Dinitz’s
algorithm (D), the relabel-to-front (RF) and highest-label (HL) variants of the push-relabel algorithm, and the
extension of the latter variant by Gallo et al., which directly solves parametric flow problems (P-HL). If the
computation required more than the available 64 GB of RAM, ‘out of memory’ (oom) is stated in the table.
Computations were stopped after 10 hours.

Network Flow Methods

LPs Goldberg’s Georgak.-Politop. Re-orientation
Graph Cohen’s G.-Pol. D RF HL P-HL D RF HL D RF HL
Amazon 125 177 3 5459 200 9164 2 5580 262 23 1247 189
DBLP 7 34 2 4111 11 8417 0 273 7 4 401 6
Youtube 242 657 15 >10h 665 >10h 5 >10h 635 4 >10h 210
Lived. 299 21468 113 >10h 14047 >10h 34 >10h 2165 251 >10h 1264
Orkut >10h oom 391 >10h >10h >10h 119 >10h 18252 1012 >10h >10h
G100 23 569 0 114 1 44 0 160 1 0 92 1
G200 631 31670 7 7925 22 1306 2 7399 29 6 3832 11

G100 12857 oom 84 >10h 434  >10h 21 >10h 554 90 >10h 352
Geoo >10h oom 427 >10h 2595 >10h 97 >10h 3146 469 >10h 1329

Gso0 oom oom 995 >10h 4870 >10h 228 >10h 4773 1508 >10h 5619
Amazon-P 75 105 1 1468 73 1011 2 2007 114 1 1528 100
DBLP-P 0 0 0 0 0 0 0 0 0 0 0 0
Youtube-P 33 50 1 495 4 63 0 464 3 0 930 4
LiveJ.-P 15 78 0 52 0 39 0 45 0 0 80 1
Orkut-P 33426 >10h 40 >10h 260 30964 24 >10h 176 33 >10h 144
G100-P 19 313 0 53 0 45 0 o1 0 0 52 0
G200-P 638 19321 3 3335 6 1364 2 3167 6 1 3000 5)
Gy00-P 18712 oom 26 >10h 103  >10h 20 >10h 96 8 >10h 82
Geoo-P >10h oom 117 >10h 627 >10h 8 >10h 605 28 >10h 548
Gs00-P oom oom 284 >10h 2117 >10h 208 >10h 2073 80 >10h 4146

Table 3: Characteristics of the graphs tested. The value € denotes the smallest value of € for which the
stopping criterion is met in Kowalik’s approximation scheme (rounded to two decimal places), and k denotes
the corresponding maximum pathlength. These values are empirical and may slightly depend on the initial
orientation, as well as the implementation of Dinitz’s algorithm.

Original input After Preprocessing
Graph [d*] Vertices Edges € k  Vertices Edges € k
Amazon 5 334,863 925,872 0.96 21 255,473 802,913 0.93 20
DBLP 57 317,080 1,049,866 67.2 5 280 13,609 5.55 4
YouTube 46 1,134,890 2,987,624 0.89 24 11,934 417,299 0.64 20
LivelJ. 194 3,997,962 34,681,189 2.54 12 3,128 539,742 0.86 14
Orkut 228 3,072,441 117,185,083 0.61 34 70,632 13,359,726 0.52 28
G100 134 5,050 499,950 1.51 11 3,825 438,700 1.29 11
G200 277 20,100 3,999,900 1.29 13 15,150 3,504,900 1.10 14
G0 567 80,200 31,999,800 0.95 18 60,300 28,019,800 0.85 19

Gsoo 859 180,300 107,999,700 0.78 22 135,450 94,544,700 0.72 23
Gsoo 1152 320,400 255,999,600 0.70 25 240,600 224,079,600 0.65 26
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3. On some graphs, the stopping criterion is not met
for any € < 1, ie. the exact solution is returned.
(Choosing € > 1 is not reasonable because the linear-
time 2-approximation algorithm is preferable.) On all
input graphs, the choices for € in the proof of Theorem
1.2 are smaller than the critical epsilon, i.e., the (first)
approximation phase computes the optimum solution.
This is easily recognized and the algorithm can be
stopped.

8 Conclusion and Outlook

We presented a generalization of the analysis of unit ca-
pacity networks to ‘almost unit capacity’ networks. We
used it to improve runtime bounds of the re-orientation,
and, for integral guesses, Goldberg’s methods. We also
showed how Kowalik’s approximation scheme can be
used to obtain asymptotically faster algorithms for pseu-
doarboricity. However, this cannot be expected to sig-
nificantly improve runtimes for graph sizes encountered
in practice today. The recent development of ‘electri-
cal’ flow algorithms such as Madry’s also gives rise to
new runtime bounds. If these algorithms have practical
relevance is a question which deserves attention in the
future.

We implemented several algorithms for pseudoar-
boricity and compared their performance. The results
show that Dinitz’s algorithm provides a decisive advan-
tage over push-relabel algorithms for this problem as
the maximum length of the shortest augmenting paths
is small. With Dinitz’s algorithm, the flow-based meth-
ods outperform linear programs with a state-of-the-art
solver. Preprocessing is an effective tool which drasti-
cally reduces runtimes on real-world input graphs. The-
oretical estimates of how much certain graph families
(e.g. graphs with power-law degree distributions) are re-
duced by preprocessing are another interesting research
question.
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A Bounds for Graph Density

Cohen’s LP (see Section 5) can be used to prove
Proposition 2.2.

Proof (Proposition 2.2, alternative). Set fyy, = 1/2 =
fuvw (80 fuvu + fuvw =1) and d = A/2. The quantity
> wver fuvw = deg(v)/2 < A/2 = d enters every vertex
v € V and thus d* <d < A/2. O

B Almost Unit Capacity Networks

Lemma 3.1 states that one should send as much flow as
possible on the ‘direct’ way, the length-2 paths s = v —
t for v € V in flow networks. While this is intuitive, we
provide a proof.

Proof (Lemma 3.1). For every v € V, define F, :=
min(c(s,v),c(v,t)). Consider the feasible flow f~ in
N where f~(s,v) = F, = f~(v,t) for all v € V and
f(u,v) = 0 for (u,v) € E. We will now reduce
the capacities by these flow values to obtain the flow
network N': Define ¢/ :=c— f~.

The crucial idea is that any cut in N has exactly the
capacity of the corresponding cut in N’ plus the values
F,forveV.

Let M denote the value of the maximum flow in V.
This is also the capacity of some minimum cut (S,T) in
N. In N’, the cut (S,T) has capacity

Clomy=>_c(s0)+ Y dwt)+ > (uw)

veT veS ueS\{s}

veT\{t}
=M — Z F,.
veV

If (S,T) is also a minimum cut in N’, its capacity must
equal the maximum flow value of N’. We can then add
the flow f~ to a maximum flow of N’ to obtain a feasible
flow for N with a value of (M =" oy Fo)+>_ ey Fo =
M. Tt is thus a maximum flow.

It remains to show that (S,T) is indeed a minimum
cut of N’. Assume otherwise, i.e. there exists a cut
(S*,T*) with

(Bl) CES*7T*) < CES,T) = C(S,T) - Z F’U'
veV
Thus,
(B.1)
O(S*,T*) = CéS*,T*) + Z r, < C((S,T)r
veV

so (S,T) is not a minimum cut in N, which contradicts
the assumption. |
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By bounding the maximum flow in AUC-2 net-
works, we are able to prove that blocking flows can be
computed in linear time. To compute a blocking flow,
Dinitz’s algorithm uses a depth-first search on the level
network, which is constructed in a breadth-first search.
The DFS performs ‘advance’ and ‘backtrack’ steps. Ev-
ery time t is reached, as much flow as possible is pushed
along the s-t path and saturated arcs on it are deleted.

Proof (Proposition 3.2). There are at most 2|V| + |E|
arcs in the network, so the number D of deletions is at
most D < 2|V|+ |E|. The total number B of backtrack
steps is at most the number of advance steps A, which
is also an upper bound on the number of pushes P
performed on the arcs. The number of advance steps
on an arc is bounded by its capacity. Thus, we have

A< Zc(s,v)—i— Z c(u,v)+Zc(v,t)

veV (u,v)EE veV
=Cot(N)+ Y c(u,v) <2(E[+2|E| = 4|E|.
(u,v)EE

Therefore, a blocking flow can be found in A+ B+ D +
P € O(|E|) steps. O

The following analysis is analogous to that of Even
and Tarjan [26]. Lemma B.1 applies to any network and
remains unchanged.

LEMMA B.1. ([26]) Let N be a flow network with maz-
imum flow M, and let f be a flow. Then the maximum
flow in the residual network N is M — |f].

Proof. In the following, let S denote a set of nodes where
t ¢ 53 s, and (S,5) the set of arcs that go from S to
S. We have

Y A= Y (a-f@)+ Y fla)

aG(S,g)N aE(S,g)N aG(S‘,S)N
Since
fl="> fla- > [fla),
CLE(S,S)N ae(S‘,S)N
we have

Y Ha) = (a) — |f].

a€e(S,9) 5 a€(S,S)n

This implies that (S, S) is a minimum cut of N if and
only if (S,5) is a minimum cut of N. The value of
the minimum cut in N is M by the max-flow min-cut
theorem, thus the value of the minimum cut in N is
M — | f|, which is the value of the maximum flow. O

Let us prove Lemma 3.2 and Theorem 3.1 in a
detailed analysis.
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LEMMA B.2. Let N be an AUC-2 G-network with
bounded mazimum flow 0 = M < 2|E|. For the zero

. . 6| E|
flow, the distance from s tot is at most ~ .

Proof. Define
Vi:={veVU{s,t}|vis at distance i from s},

and let [ denote the distance of ¢ from s, where
unreachable vertices (i = oo) are not of interest. Let
FE; denote the set of arcs from V;_; to V;. Every E;
defines a cut in the network. For ¢ = 2,...,1— 1, we have

(B.2) 2B, > M

because these arcs have a capacity of two at most and
M is the value of the minimum cut. However, we may
have 2|E1|,2|E;] < M because the arcs may have a
larger capacity than two. Therefore,

l
2|E| > 22|Ei|
1=1
>2|Ey |+ (1—2)M +2|E| > (1-2)M,

2|E|+2M _ 6|E|
Mo S 0

2|E| _
sowehavel§7+2—

THEOREM B.1. Dinitz’s algorithm runs in O(|E|*/?)
time on an AUC G-network N with bounded total source
and sink arc capacities Cs (N) < 2|E]|.

Proof. It M < \/E , the result follows from Proposition
3.2 since every phase increases the flow by at least one.
Otherwise, consider the phase in which the flow value F’
reaches the value M — m . When this phase begins,
we have ' < M — /|E]. The residual network N
is an AUC-2 G-network with bounded maximum flow
M < 2|E|. By Lemma B.1, its maximum flow is

M=M-F>M-—(M-+/|E|]) =|E|

Since the flow in the residual network is initially zero,
by Lemma B.2, the length of the shortest augmenting
path satisfies

- _ 6lE]|

6|
<22 < 2—L —6\/|E]
Mo IE]

The number of phases until this point is thus at most
6\/@ , and since at most \/E phases are needed until
completion, the total number of phases is less than
7y/]E|, thus the algorithm needs O(|E|*>/?) steps by
Proposition 3.2. ]

LEMMA B.3. Let N be an AUC-2 G-network with
bounded mazimum flow 0 £ M < 2|E|. For the zero

Proof. Define
Vi:={veVuU{s,t}|vis at distance i from s}

and let [ denote the distance of ¢ from s, where
unreachable vertices (i = oo) are not of interest. We
consider the cuts between V; and V;y for ¢ = 0,..., L
Since M 1is the value of the minimum cut, the value
C(i,i+1) of the cut between V; and V;;1 must be at least
M. Therefore, we have 2(|V;|-|Viz1]) > C(4,i+1) > M
for 1 < 4 < I — 2 since every arc from V; to V41
has a capacity of two at most. Therefore, for every
1<i<1{—-2,wehave|V;| > +/M/2o0r |Viy1]| >/ M/2.

We now intend to sum over the cardinalities |V]
for i = 0,...,1. We would like to argue that for
any two successive sets, one set has at least /M/2
vertices. In the worst case, the summation sequence
would alternate between values less than and greater
or equal to \/M/2. However, in our case it is possible
that |Vil],|Vi—1| < /M/2, since source and sink arc
capacities can be larger than two. Thus,

-1

!
2.¢M72g2+v21J-¢M7/2§§IWSVI-

Since M < 2|E| < 2% < |V|?, we have VM <
|V|. By applying this fact, we get

2|V +1_2\/§|V|+\/M< (1+V8)|V]
M2 VM VM

[ <

O

THEOREM B.2. Dinitz’s algorithm TUNS m
O(|V|?>?|E|) time on an AUC-2 G-network with
bounded total source and sink arc capacities

Proof. If M < |V|?/3, the result follows since the flow
increases at least by one per phase of Dinitz’s algorithm.
Otherwise, let F' be the flow value of the phase in
which the flow reaches the value M — |V[*/3. We have
F < M—|V|?/3.

By Lemma B.1, the maximum flow in the residual
network is

M=M-F>M-—(M-—|V[*%=|V*3

Since the flow in the residual network is initially zero,
we can apply Lemma B.3: The length of the shortest
path satisfies

i VBV

<

N (1\+/|‘i|§2)/|3v = (14 VB) Ivpr

Thus the number of phases up to this point is at most
(14+/8)|V|?/3, and at most |V|?/ phases remain, for a

flow, the distance from s to t is less than %\/SM)M. total of O(|V'[>/3) phases. g
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C Faster Algorithms for Pseudoarboricity

Approximations can help speed up exact computation.
We now give the final analysis omitted in the proof of
Lemma 3.3.

Proof (Lemma 3.8, continued). We perform the binary
search on an interval of integers, which needs O(log L)
tests for an interval length L.

d—1

d—1
Lg(d—l)—’714_5—‘—|—1§(1+5)1‘—1+5+1.

Now, we apply the bounds z < d and § > 0 and obtain

x—1 (1+6)%xr—=z
< - ~ - =
LL(40)a— gt l< 5 +2
(62 +20)x ]
ive 20Tyt

< 20x + 2.

Thus, we need to perform O(log(dx)) tests in the binary
search at most. g

We generalize Lemma 3.4 to ‘relaxed’ orientations.
These are characterized by Cohen’s LP (see Section 5).

LeEmMA C.1. Let (fu, fu,d) be a solution to Cohen’s LP
for some d > d*(G). Then for every vertex v € V, the
unit distance in this relaxed orientation to a verter u
with smaller relazed indegree does not exceed logy, - |V'|.

Proof. Let v be an arbitrary vertex. Let k denote
the minimum unit distance in C_jrel from v to a vertex
whose relaxed indegree is smaller than d. By distance
in the relaxed orientation we mean the distance in the
following BF'S started in v: only edges may be traversed
that are oriented to the vertex removed from the queue
by more than zero. For example, an edge uv with
fuvw > 0 may be traversed from v to u, an edge uv
with fu,» = 0 may not be traversed from v to u.

Let |V;| denote the set of vertices which are at
distance 7 at most from v. We show by induction that
Vil > (4£)" for i = 0, ...,k. The claim holds for i = 0.
Assume the induction hypothesis holds for some i < k.
Let F; 11 denote the set of edges where both ends are in
Vig1.

Every vertex in V; has a relaxed indegree of at least
d (otherwise i > k, which contradicts the assumption)
and since we have a relaxed d-orientation, its relaxed
indegree is at most d, so it is exactly d. Thus

|Ei+1| = Z (fuw,u + fuw,w)

uwEE; 11
> Z Z fuw,u = Z Z fuw,u :dl‘/z|
ueV; uwwek ueV; vwek
ww,u >0
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: |Eiya] * : - d
Since vl < d*, we obtain |Vii1| >

Vi|. By
applying the induction hypothesis, the claim is shown
for alli =0, ..., k.

Because |Vi| < |V|, we have (-£)* < |V|, which
concludes the proof. O

The lemma allows us to directly approximate d*
with shortest-augmenting path algorithms on the re-
orientation network with possibly non-integral guesses.
Note however that runtime analyses of flow algorithms
often require integral capacities.

D Linear Programs

As mentioned in Section 5, every solution to Cohen’s
LP (whose polyhedron we call P¢) is a maximum flow
in Goldberg’s flow network with parameter d.

PROPOSITION D.1. Every solution (fu, fv,d) € Pc is a
mazimum flow in Goldberg’s network for guess g = d.

Proof. Let ({s},V U{t}) be a minimum cut of Gold-
berg’s network for some guess g > 0. Then, we have
g > d* [3, Theorem 1]. Therefore, there is a Cohen
solution (fu, fu,9) € Pc. Let in(v) denote the ingoing
‘orientation flow’ in Cohen’s network. We set the flow in
Goldberg’s network to be f(u,v) = fupw, f(s,v) = |E|
and f(v,t) = |E|+ 2in(v) — deg(v) for all u,v € V. We
first show that the flow is feasible. The sink arc capacity
constraints are fulfilled since we have in(v) < g,

f(v,t) = |E| + 2in(v) — deg(v)
< |E| 4 2g — deg(v) = c(v, t).

All other capacity constraints are trivially satisfied.
Every vertex v receives in(v) from its neighbors and
sends deg(v) — in(v) to its neighbors. Furthermore, it
receives |E| from the source and sends |E| + 2in(v) —
deg(v) to the sink. Flow conservation is fulfilled since
|E|+in(v) = (deg(v) —in(v)) + (JE| + 2in(v) — deg(v)).
Thus the flow f is feasible. It is also a maximum flow
of value |V| - |E| since all source arcs are saturated. O
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