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Pseudotrees Orientations New Results Open Questions

Pseudoarboricity

Definition
The pseudoarboricity p(G) of an undirected graph G is the
minimum number of pseudoforests into which the graph can be
decomposed.
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Pseudoarboricity and Orientations

Theorem (Frank–Gyárfás 1976 + Picard–Queyranne 1982)
Let ~G be an orientation of G such that the maximum indegree is
minimal. Then this indegree equals the pseudoarboricity p(G).
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The ‘Re-orientation’ Algorithm

Determine the integer p in a binary search on a search
interval; I = {0, ..., |V |} always contains p

For a test value d in the interval, we test whether there is an
orientation of the graph such that the maximum indegree is at
most d .
The test can be performed with a maximum flow algorithm,
which ‘re-orients’ an arbitrary orientation to a d-orientation by
reversing directed paths, if possible
With Dinitz’s algorithm, we need O(|E |3/2 log |I|) time on a
search interval I that contains p
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Approximating p

The algorithm can be turned into an approximation scheme
which returns d satisfying p ≤ d ≤ d(1 + ε)pe in time

O
(
|E | log |V |

ε
log |I|

)
for ε > 0 on a search interval I containing p
The approximation is not achieved by stopping the binary
search early, but by stopping Dinitz’s algorithm after
2 + log1+ε |V | phases (Kowalik 2006)
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Speeding up Exact Computation – the Idea

First compute a (1 + ε)-approximation, then the exact
algorithm can be performed in O(log(εp)) tests

We set ε to balance the runtimes of the approximation and
the exact phase
We will use the fact that always p ∈ O(

√
|E |) holds
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A Selection of New Results

Bound on p Runtime bound to compute p

Ω(
√
|E |) O

(
|E |3/2

)
(later)

− O
(
|E |3/2√log log p

)

O
( √

|E |
log |V |

)
O
(
|E |3/2 log∗ p

)
O
( √

|E |
log2 |V |

)
O
(
|E |3/2

)

Comparison: matroid partitioning algorithm (Westermann 1988):

O
(
|E |3/2√log p

)

5
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How to obtain O
(
|E |3/2 log log |V |

)
unconditionally

Use a (1 + ε)-approximation to accelerate the exact algorithm!
Set

ε =
(log |V |)2

p .

The approximation scheme runs in time
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ε =
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p .

The approximation scheme runs in time

O
(
|E |XXXXlog |V | p

XXXXX(log |V |)2
XXXXlog |V |

)
⊆ O(|E |3/2)

A binary search in an exact algorithm needs O(log(εp)) tests
on the narrowed search interval – the runtime is

O(|E |3/2 log log�2 |V |).
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Sketch: Obtaining O
(
|E |3/2 log∗ p

)
if p ∈ O(

√
|E |/ log |V |)

Compute a 2-approximation of p in O(|E |).
Run the approximation scheme i = 1, ..., k times:

ε1 '
log p

p , ε2 '
log log p

p , ε3 '
log log log p

p , ..., εk '
log×k p

p

The initial interval size is |I0| ∈ O(p) with the
2-approximation.
In every phase i = 1, ..., k, we reduce the interval to size

|Ii | ∈ O
(
log×i p

)
.
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Sketch: Obtaining O
(
|E |3/2 log∗ p

)
if p ∈ O

(√
|E |/ log |V |

)
The runtime of the i-th approximation phase with εi = log×i p

p

is O
(
|E |3/2

)

Run k = log∗(p)− 1 approximation phases
Run the exact algorithm on the remaining constant-size
interval in O

(
|E |3/2

)
time

The total runtime is O
(
|E |3/2 log∗ p

)
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What have we shown?

Bound on p Runtime bound to compute p

Ω(
√
|E |) O

(
|E |3/2

)
up next

− O
(
|E |3/2√log log p

)
(X)

O
( √

|E |
log |V |

)
O
(
|E |3/2 log∗ p

)
X

Cmp. Westermann 1988: O
(
|E |3/2√log p

)
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The Densest Subgraph Problem

A B

C D

E F

Definition
Let G = (V ,E ) be an undirected graph. The
maximum density is defined as

d∗(G) := max
H⊆G

|EH |
|VH |

.

Observation (Khuller and Saha 2009)
A vertex v with deg(v) < d∗(G) cannot be in a densest subgraph.

Theorem (Picard–Queyranne 1982)
For any undirected graph G, we have dd∗(G)e = p.
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Preprocessing

Observation (Khuller and Saha 2009)
A vertex v with deg(v) < d∗(G) cannot be in a densest subgraph.

Compute a lower bound d ≤ d∗(G)

Remove all vertices whose degree is less than d (repeatedly)
For the resulting graph G ′ = (V ′,E ′), we have
d∗(G ′) = d∗(G) and thus p(G ′) = p(G) by the
Picard–Queyranne theorem
G ′ is possibly smaller (great!) and has a higher average
density, i.e.

|E ′|
|V ′| ≥

|E |
|V | .
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Preprocessing – A Theoretical Guarantee

Utilize Gabow’s algorithm, which runs in O
(
|E |3/2 log |V |

2

|E |

)
time

Proposition (B.)
If d∗(G) ∈ Ω(

√
|E |), then we can obtain a subgraph G ′ = (V ′,E ′)

with |E ′| ∈ Θ(|V ′|2) and d∗(G ′) = d∗(G) in linear time.

Corollary
If d∗(G) ∈ Ω(

√
|E |), p can be determined in O(|E |3/2).
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The Re-orientation Algorithm in Practice (Dinitz’s algorithm)

Without preprocessing With preprocessing

Graph p |E | Runtime [s] |E ′| Runtime [s]

Amazon 5 900K 23 800K 1
DBLP 57 1M 4 14K 0

YouTube 46 3M 4 417K 0
LiveJournal 194 35M 251 540K 0

Orkut 228 117M 1012 13M 33

Note: Push-relabel algorithms are slower by an order of magnitude
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Open Questions

Do other problems exist where we can speed up computation
with an approximation scheme?

How much are certain graph families, e.g. power-law graphs,
reduced by preprocessing?
A 2-approximation of p (and d∗) can be found in O(|E |) time
with a greedy algorithm. Is a factor smaller than 2 possible in
linear time?
(Any constant-factor approximation can be found in
O(|E | log |V | log p) time)
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O(|E | log |V | log p) time)
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Thank you for your attention!
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