

Fast Algorithms for Pseudoarboricity

Meeting on Algorithm Engineering and Experiments – ALENEX 2016

Markus Blumenstock

Institute of Computer Science, University of Mainz January 10th, 2016

	Pseudotrees	Orientations	New Results	Open Questions
JGU	A tree			

G	U	

Pseudotrees

Orientatior

New Results

Open Questions

...an unrooted tree...

	Pseudotrees
JGU	a pseudotree

Orientations

New Results

		Pseudotrees	Orientations	New Results	Open Questions
GU	?!				

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Pseudoarboricity			

Definition

The pseudoarboricity p(G) of an undirected graph G is the minimum number of pseudoforests into which the graph can be decomposed.

	Pseudotrees	Orientations	New Results	Open Questions
GU	Pseudoarboricity a	nd Orientations		

Theorem (Frank–Gyárfás 1976 + Picard–Queyranne 1982)

Let \vec{G} be an orientation of G such that the maximum indegree is minimal. Then this indegree equals the pseudoarboricity p(G).

	Pseudotrees	Orientations	New Results	Open Questions
GU	Pseudoarboricity and	l Orientations		

Theorem (Frank–Gyárfás 1976 + Picard–Queyranne 1982)

Let \vec{G} be an orientation of G such that the maximum indegree is minimal. Then this indegree equals the pseudoarboricity p(G).

Determine the integer p in a binary search on a search interval; I = {0,..., |V|} always contains p

	Pseudotrees	Orientations	New Results	Open Questions
JGU	The 'Re-orientation'	Algorithm		

- Determine the integer p in a binary search on a search interval; I = {0,..., |V|} always contains p
- For a test value d in the interval, we test whether there is an orientation of the graph such that the maximum indegree is at most d.

	Pseudotrees	Orientations	New Results	Open Questions
JGU	The 'Re-orientation'	Algorithm		

- Determine the integer p in a binary search on a search interval; I = {0,..., |V|} always contains p
- For a test value d in the interval, we test whether there is an orientation of the graph such that the maximum indegree is at most d.
- The test can be performed with a maximum flow algorithm, which 're-orients' an arbitrary orientation to a *d*-orientation by reversing directed paths, if possible

	Pseudotrees	Orientations	New Results	Open Questions
JGU	The 'Re-orientation'	Algorithm		

- Determine the integer p in a binary search on a search interval; I = {0,..., |V|} always contains p
- For a test value d in the interval, we test whether there is an orientation of the graph such that the maximum indegree is at most d.
- The test can be performed with a maximum flow algorithm, which 're-orients' an arbitrary orientation to a *d*-orientation by reversing directed paths, if possible
- With Dinitz's algorithm, we need O(|E|^{3/2} log |I|) time on a search interval I that contains p

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Approximating <i>p</i>			

■ The algorithm can be turned into an approximation scheme which returns *d* satisfying $p \le d \le \lceil (1 + \epsilon)p \rceil$ in time

$$\mathcal{O}\left(|E| \; \frac{\log|V|}{\epsilon} \; \log|I|\right)$$

for $\epsilon > 0$ on a search interval I containing p

■ The approximation is not achieved by stopping the binary search early, but by stopping Dinitz's algorithm after 2 + log₁₊ |V| phases (Kowalik 2006)

■ First compute a (1 + ϵ)-approximation, then the exact algorithm can be performed in O(log(ϵp)) tests

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Speeding up Exact	Computation	– the Idea	

- First compute a (1 + ϵ)-approximation, then the exact algorithm can be performed in O(log(ϵp)) tests
- We set e to balance the runtimes of the approximation and the exact phase

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Speeding up Exact	Computation –	the Idea	

- First compute a (1 + ϵ)-approximation, then the exact algorithm can be performed in O(log(ϵρ)) tests
- We set
 e to balance the runtimes of the approximation and the exact phase
- We will use the fact that always $p \in \mathcal{O}(\sqrt{|E|})$ holds

	Pseudotrees	Orientations	New Results	Open Questions
JGU	A Selection of New	/ Results		

-
$$\mathcal{O}\left(|E|^{3/2}\sqrt{\log\log p}\right)$$

_

	Pseudotrees	Orientations	New Results	Open Questions
JG	A Selection of New	Results		

$$\begin{array}{cc} - & \mathcal{O}\left(|E|^{3/2}\sqrt{\log\log p}\right) \\ \mathcal{O}\left(\frac{\sqrt{|E|}}{\log |V|}\right) & \mathcal{O}\left(|E|^{3/2}\log^* p\right) \end{array}$$

	Pseudotrees	Orientations	New Results	Open Questions
JGU	A Selection of New	Results		

$$\begin{array}{ll} & - & \mathcal{O}\left(|E|^{3/2}\sqrt{\log\log p}\right) \\ \mathcal{O}\left(\frac{\sqrt{|E|}}{\log|V|}\right) & \mathcal{O}\left(|E|^{3/2}\log^* p\right) \\ \mathcal{O}\left(\frac{\sqrt{|E|}}{\log^2|V|}\right) & \mathcal{O}\left(|E|^{3/2}\right) \end{array}$$

	Pseudotrees	Orientations	New Results	Open Questions
JGU	A Selection of New	Results		

	Pseudotrees	Orientations	New Results	Open Questions
JGU	A Selection of New	Results		

Comparison: matroid partitioning algorithm (Westermann 1988):

$$\mathcal{O}\left(|E|^{3/2}\sqrt{\log p}\right)$$

Use a (1+ \epsilon)-approximation to accelerate the exact algorithm!
Set

$$\epsilon = \frac{(\log |V|)^2}{p}.$$

- Use a $(1 + \epsilon)$ -approximation to accelerate the exact algorithm!
- Compute a 2-approximation \tilde{p} of p in $\mathcal{O}(|E|)$. Set

$$\epsilon = \frac{(\log |V|)^2}{\tilde{p}} \le \frac{(\log |V|)^2}{p}.$$

- Use a $(1 + \epsilon)$ -approximation to accelerate the exact algorithm!
- Compute a 2-approximation \tilde{p} of p in $\mathcal{O}(|E|)$. Set

$$\epsilon = rac{(\log |V|)^2}{\widetilde{p}} \leq rac{(\log |V|)^2}{p}.$$

The approximation scheme runs in time

$$\mathcal{O}\left(|E|\log|V|\frac{p}{(\log|V|)^2}\log|V|\right)$$

- Use a $(1 + \epsilon)$ -approximation to accelerate the exact algorithm!
- Compute a 2-approximation \tilde{p} of p in $\mathcal{O}(|E|)$. Set

$$\epsilon = rac{(\log |V|)^2}{\widetilde{p}} \leq rac{(\log |V|)^2}{p}.$$

The approximation scheme runs in time

$$\mathcal{O}\left(|E|\mathsf{tog}+\mathsf{V}|\underbrace{\frac{\mathsf{p}}{(\mathsf{log}+\mathsf{V}|)^2}}_{\mathsf{(\mathsf{log}}+\mathsf{V}|)}\mathsf{tog}+\mathsf{V}|\right) \subseteq \mathcal{O}(|E|^{3/2})$$

- Use a $(1 + \epsilon)$ -approximation to accelerate the exact algorithm!
- Compute a 2-approximation \tilde{p} of p in $\mathcal{O}(|E|)$. Set

$$\epsilon = rac{(\log |V|)^2}{\widetilde{p}} \leq rac{(\log |V|)^2}{p}.$$

The approximation scheme runs in time

$$\mathcal{O}\left(|E|\mathsf{tog}+\mathcal{V}|\underbrace{\frac{\rho}{(\mathsf{log}+\mathcal{V}|)^2}}_{\mathsf{(\mathsf{log}}+\mathcal{V}|)^2}\mathsf{tog}+\mathcal{V}|\right) \subseteq \mathcal{O}(|E|^{3/2})$$

■ A binary search in an exact algorithm needs O(log(ep)) tests on the narrowed search interval – the runtime is

$$\mathcal{O}(|E|^{3/2}\log\log^2 |V|).$$

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Sketch: Obtaining C	$O\left(E ^{3/2}\log^* p ight)$	if $p \in \mathcal{O}(\sqrt{ E })$	$ /\log V)$

- Compute a 2-approximation of p in $\mathcal{O}(|E|)$.
- Run the approximation scheme i = 1, ..., k times:

$$\epsilon_1 \simeq rac{\log p}{p}, \ \epsilon_2 \simeq rac{\log \log p}{p}, \ \epsilon_3 \simeq rac{\log \log \log p}{p}, \ ..., \ \epsilon_k \simeq rac{\log^{ imes k} p}{p}$$

- Compute a 2-approximation of p in $\mathcal{O}(|E|)$.
- Run the approximation scheme i = 1, ..., k times:

$$\epsilon_1 \simeq rac{\log p}{p}, \ \epsilon_2 \simeq rac{\log \log p}{p}, \ \epsilon_3 \simeq rac{\log \log \log p}{p}, \ ..., \ \epsilon_k \simeq rac{\log^{ imes k} p}{p}$$

The initial interval size is $|I_0| \in \mathcal{O}(p)$ with the 2-approximation.

- Compute a 2-approximation of p in $\mathcal{O}(|E|)$.
- Run the approximation scheme i = 1, ..., k times:

$$\epsilon_1 \simeq rac{\log p}{p}, \ \epsilon_2 \simeq rac{\log \log p}{p}, \ \epsilon_3 \simeq rac{\log \log \log p}{p}, \ ..., \ \epsilon_k \simeq rac{\log^{ imes k} p}{p}$$

- The initial interval size is $|I_0| \in \mathcal{O}(p)$ with the 2-approximation.
- In every phase i = 1, ..., k, we reduce the interval to size

$$|I_i| \in \mathcal{O}\left(\log^{\times i} p\right).$$

The runtime of the *i*-th approximation phase with $\epsilon_i = \frac{\log^{< i} p}{p}$ is $\mathcal{O}\left(|E|^{3/2}\right)$

- The runtime of the *i*-th approximation phase with $\epsilon_i = \frac{\log^{\times i} p}{p}$ is $\mathcal{O}\left(|E|^{3/2}\right)$
- Run $k = \log^*(p) 1$ approximation phases
- Run the exact algorithm on the remaining constant-size interval in $\mathcal{O}\left(|E|^{3/2}\right)$ time

- The runtime of the *i*-th approximation phase with $\epsilon_i = \frac{\log^{\times i} p}{p}$ is $\mathcal{O}\left(|E|^{3/2}\right)$
- Run $k = \log^*(p) 1$ approximation phases
- Run the exact algorithm on the remaining constant-size interval in $\mathcal{O}\left(|E|^{3/2}\right)$ time
- The total runtime is $\mathcal{O}\left(|E|^{3/2}\log^* p\right)$

	Pseudotrees	Orientations	New Results	Open Questions
JGU	What have we shown	?		

$$\begin{array}{ccc} - & \mathcal{O}\left(|E|^{3/2}\sqrt{\log\log p}\right) & (\checkmark) \\ \mathcal{O}\left(\frac{\sqrt{|E|}}{\log |V|}\right) & \mathcal{O}\left(|E|^{3/2}\log^* p\right) & \checkmark \end{array}$$

Cmp. Westermann 1988: $\mathcal{O}\left(|E|^{3/2}\sqrt{\log p}\right)$

	Pseudotrees	Orientations	New Results	Open Questions
JGU	What have we shown	?		

Bound on <i>p</i>	Runtime bound to co	mpute <i>p</i>
$\Omega(\sqrt{ E })$	$\mathcal{O}\left(E ^{3/2} ight)$	up next
_	$\mathcal{O}\left(E ^{3/2}\sqrt{\log\log p}\right)$	(√)
$\mathcal{O}\left(rac{\sqrt{ E }}{\log V } ight)$	$\mathcal{O}\left(E ^{3/2}\log^* p\right)$	\checkmark

Cmp. Westermann 1988: $\mathcal{O}\left(|E|^{3/2}\sqrt{\log p}\right)$

JGUPseudotreesOrientationsNew ResultsOpen Questions

Definition

Let G = (V, E) be an undirected graph. The maximum density is defined as

$$d^*(G) := \max_{H \subseteq G} \frac{|E_H|}{|V_H|}.$$

JGUNew ResultsOpen QuestionsJGThe Densest Subgraph Problem

Definition

Let G = (V, E) be an undirected graph. The maximum density is defined as

$$d^*(G) := \max_{H \subseteq G} \frac{|E_H|}{|V_H|}.$$

Observation (Khuller and Saha 2009)

A vertex v with $deg(v) < d^*(G)$ cannot be in a densest subgraph.

JGUNew ResultsOpen QuestionsJGThe Densest Subgraph Problem

Definition

Let G = (V, E) be an undirected graph. The maximum density is defined as

$$d^*(G) := \max_{H \subseteq G} \frac{|E_H|}{|V_H|}.$$

Observation (Khuller and Saha 2009)

A vertex v with $\deg(v) < d^*(G)$ cannot be in a densest subgraph.

Theorem (Picard–Queyranne 1982)

For any undirected graph G, we have $\lceil d^*(G) \rceil = p$.

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Preprocessing			

A vertex v with $deg(v) < d^*(G)$ cannot be in a densest subgraph.

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Preprocessing			

A vertex v with $deg(v) < d^*(G)$ cannot be in a densest subgraph.

• Compute a lower bound $d \leq d^*(G)$

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Preprocessing			

A vertex v with $deg(v) < d^*(G)$ cannot be in a densest subgraph.

- Compute a lower bound $d \leq d^*(G)$
- Remove all vertices whose degree is less than *d* (repeatedly)

A vertex v with $\deg(v) < d^*(G)$ cannot be in a densest subgraph.

- Compute a lower bound $d \leq d^*(G)$
- Remove all vertices whose degree is less than d (repeatedly)
- For the resulting graph G' = (V', E'), we have $d^*(G') = d^*(G)$ and thus p(G') = p(G) by the Picard–Queyranne theorem

A vertex v with $deg(v) < d^*(G)$ cannot be in a densest subgraph.

- Compute a lower bound $d \leq d^*(G)$
- Remove all vertices whose degree is less than d (repeatedly)
- For the resulting graph *G*′ = (*V*′, *E*′), we have $d^*(G') = d^*(G)$ and thus p(G') = p(G) by the Picard–Queyranne theorem
- G' is possibly smaller (great!) and has a higher average density, i.e.

$$\frac{|E'|}{|V'|} \ge \frac{|E|}{|V|}.$$

Proposition (B.)

If $d^*(G) \in \Omega(\sqrt{|E|})$, then we can obtain a subgraph G' = (V', E')with $|E'| \in \Theta(|V'|^2)$ and $d^*(G') = d^*(G)$ in linear time.

Proposition (B.)

If $d^*(G) \in \Omega(\sqrt{|E|})$, then we can obtain a subgraph G' = (V', E')with $|E'| \in \Theta(|V'|^2)$ and $d^*(G') = d^*(G)$ in linear time.

Corollary

If $d^*(G) \in \Omega(\sqrt{|E|})$, p can be determined in $\mathcal{O}(|E|^{3/2})$.

	Pseudotrees	Orientations	New Results	Open Questions
JGU	The Re-orientation	Algorithm i	n Practice (Dinitz'	s algorithm)

		Without preprocessing		With p	preprocessing
Graph	p	E	Runtime [s]	E'	Runtime [s]
Amazon	5	900K	23	800K	1
DBLP	57	1M	4	14K	0
YouTube	46	3M	4	417K	0
LiveJournal	194	35M	251	540K	0
Orkut	228	117M	1012	13M	33

Note: Push-relabel algorithms are slower by an order of magnitude

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Open Questions			

Do other problems exist where we can speed up computation with an approximation scheme?

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Open Questions			

- Do other problems exist where we can speed up computation with an approximation scheme?
- How much are certain graph families, e.g. power-law graphs, reduced by preprocessing?

	Pseudotrees	Orientations	New Results	Open Questions
JGU	Open Questions			

- Do other problems exist where we can speed up computation with an approximation scheme?
- How much are certain graph families, e.g. power-law graphs, reduced by preprocessing?
- A 2-approximation of *p* (and *d*^{*}) can be found in O(|E|) time with a greedy algorithm. Is a factor smaller than 2 possible in linear time?

(Any constant-factor approximation can be found in $\mathcal{O}(|E|\log |V|\log p)$ time)

Thank you for your attention!