
P S E U D O F O R E S T PA RT I T I O N S

A N D T H E A P P R O X I M AT I O N O F

C O N N E C T E D S U B G R A P H S O F H I G H D E N S I T Y

Dissertation

zur Erlangung des Grades

„Doktor der Naturwissenschaften“

am Fachbereich Physik, Mathematik und Informatik

der Johannes Gutenberg-Universität in Mainz

vorgelegt von

Markus Andreas Daniel Blumenstock

geboren in Frankfurt am Main

Mainz, den 8. Januar 2020

Typographisch korrigierte Fassung vom 19. Juni 2020

erstberichterstatter:
Prof. Dr. Ernst Althaus
zweitberichterstatter:
Prof. Dr. Andreas Hildebrandt
drittberichterstatter:
Prof. Dr. Ulrich Meyer

Datum des Kolloquiums: 12.11.2019 D77

Z U S A M M E N FA S S U N G

In dieser Arbeit werden das Problem, in einem einfachen Graphen
einen Subgraphen mit maximaler Dichte d∗ zu finden, sowie verwand-
te Probleme diskutiert. Die ganzzahlige Variante des dazu dualen
Problems ist, eine Orientierung mit kleinstmöglichem maximalen Ein-
gangsgrad zu finden. Dieser Eingangsgrad ist gleich der kleinsten
Anzahl an Pseudowäldern, in die der Graph zerlegt werden kann, und
wird daher als Pseudoarborizität p bezeichnet.

Es wird gezeigt, wie Kowaliks Approximationsschema dazu ver-
wendet werden kann, die balancierte binäre Suche des Algorithmus
von Gabow und Westermann zu beschleunigen und eine Laufzeit von
O(m3/2

√︁
log log p) für die Bestimmung von p zu erreichen, wobei

m die Anzahl der Kanten des Graphen ist. Ein Subgraph mit Dichte
größer ⌈d∗⌉ − 1 kann mit derselben asymptotischen Laufzeit bestimmt
werden. Es werden zudem Laufzeiten verschiedener Algorithmen zur
Bestimmung von p experimentell verglichen. Mit aktueller Hardwa-
re können die Berechnungen für soziale Netzwerke mit hunderten
Millionen Kanten in wenigen Minuten ausgeführt werden.

Aufbauend auf Kowaliks Approximationsschema wird ein Appro-
ximationsschema für die Arborizität eines Graphen mit derselben
Laufzeit entwickelt. Im Gegensatz zu früheren Ansätzen approximiert
dieses nicht nur den Wert der Arborizität, sondern berechnet auch
eine dazugehörige Zerlegung in Wälder. Dies wird durch eine schnelle
Konvertierung von k Pseudowäldern in k + 1 Wälder erreicht.

Basierend auf dem Konzept der maximalen Dichte kann ein gemischt-
ganzzahliges lineares Programm (MILP) aufgestellt werden, um zu-
sammenhängende Subgraphen zu finden, die eine lineare Funktion
minimieren. Dieses Problem, das eng mit dem Steinerbaumproblem
auf Graphen verwandt ist, ist im Allgemeinen NP-schwer. Für den
Fall, dass die Anzahl der Knoten des Subgraphen genau k betragen
soll, wird das MILP mit einer anderen bestehenden Formulierung, den
generalized subtour elimination constraints (GSEC), sowohl theoretisch
als auch experimentell verglichen.

Eine weiteres Thema, das beleuchtet wird, ist die Approximation
des Steinerbaumproblems auf Graphen mithilfe der bidirected cut re-
laxation (BCR), welche äquivalent zu GSEC ist. Es wird gezeigt, dass
der Algorithmus von Byrka et al. eine 1,354-Approximation berechnet,
wenn die Instanzen keine Steinerklauen enthalten. Es wird zudem eine
Idee zur Generierung schwieriger Instanzen vorgestellt, die jedoch
nicht in verbesserten unteren Schranken an das integrality gap von
BCR resultiert.

iii

A B S T R A C T

This thesis deals with the problem of finding a subgraph of maximum
density d∗ in a simple graph and related problems. The integral
variant of the dual problem is to find an orientation with the smallest
possible maximum indegree. This indegree is equal to the smallest
number p of pseudoforests into which the graph can be partitioned,
and is therefore called pseudoarboricity.

It is shown that Kowalik’s approximation scheme can be employed
to accelerate the balanced binary search of the Gabow–Westermann
algorithm in order to obtain a runtime of O(m3/2

√︁
log log p) for deter-

mining p, where m is the number of edges in the graph. A subgraph
of density greater than ⌈d∗⌉ − 1 can be determined within the same
asymptotic runtime. In addition, the runtimes of several algorithms
for determining p are compared experimentally. On current hardware,
the computations can be carried out in minutes for social networks
with hundreds of millions of edges.

Building upon Kowalik’s approximation scheme, an approximation
scheme for the arboricity with the same asymptotic runtime is devel-
oped. In contrast to previous approaches, it does not only approximate
the value of the arboricity, but also computes a corresponding forest
partition. This is achieved using a fast conversion of k pseudoforests
into k + 1 forests.

Based on the concept of maximum density, a mixed integer linear
program (MILP) can be formulated for finding a connected subgraph
that minimizes a linear function. This problem, which is closely related
to the Steiner tree problem on graphs, is NP-complete in general. For
the case where the number of vertices is required to be exactly k, the
MILP is compared to an existing formulation, the generalized subtour
elimination constraints (GSEC), both in theory and in practice.

Another topic under scrutiny is the approximation of the Steiner tree
problem on graphs with the bidirected cut relaxation (BCR), which
is equivalent to GSEC. It is shown that the algorithm of Byrka et al.
computes a 1.354-approximation if the instances do not contain Steiner
claws. Furthermore, an idea for generating hard instances is presented,
yet it does not result in improved lower bounds on the integrality gap
of BCR.

v

A C K N O W L E D G E M E N T S

First and foremost, I want to thank my advisor, Professor Ernst Alt-
haus. He always had a friendly ear to my questions and valuable
advice, and he let me freely pursue my interests in both research and
teaching to a remarkable degree.

I am also indebted to the supervisor of my three-month stay at the
University of Waterloo in Canada, Professor Jochen Könemann. He
took a lot of time to meet with me and discuss ideas, and invited me
to a workshop at the Banff International Research Station.

My colleagues at the Institute of Computer Science in Mainz also
deserve credit for the wonderful working climate and the occasional
get-together. I want to highlight the members of the Algorithmics
group: Björn Beber, Domenico Mosca, Udo Muttray, and Sarah Ziegler,
as well as ‘honorary member’ Frank Fischer.

Last, but not least, I want to thank my wife Katharina for her
support and our son Adrian, who fills both our lives with joy.

vii

C O N T E N T S

1 introduction 1

1.1 Historical Background and Motivation 1

1.2 Structure and Outline of the Thesis 4

1.3 Collaboration and Publications 6

2 preliminaries 7

2.1 Basic Definitions . 7

2.1.1 Set-Theoretic Foundations 7

2.1.2 Propositional Calculus 8

2.2 Graphs . 9

2.2.1 Vertices and Edges 9

2.2.2 Undirected and Simple Graphs 10

2.2.3 Adjacency and Incidence 10

2.2.4 Degrees and Orientations 10

2.2.5 Subgraphs, Induced Subgraphs, and Matchings 11

2.2.6 Paths, Cycles, and Connected Components . . . 11

2.2.7 Trees and Planarity 12

2.3 Asymptotics . 13

2.4 Probability Theory . 15

2.4.1 The Coupon Collector Problem 17

2.5 Algorithms and Machine Models 18

2.6 Complexity Classes . 19

2.7 Approximation Algorithms 22

2.8 Breadth-First and Depth-First Search 22

2.9 Linear Algebra . 24

2.10 Matroid Theory . 25

2.11 Linear Programming . 26

2.11.1 Linear Programs and the Canonical Form 26

2.11.2 Polyhedra and Extreme Points 27

2.11.3 Duality . 28

2.11.4 Total Unimodularity 29

2.11.5 Algorithms to Solve Linear Programs 30

2.11.6 Integer Linear Programs 30

2.11.7 Branch-and-Bound and Branch-and-Cut 32

2.12 The Maximum Flow Problem 33

2.12.1 Flows as Linear Programs 33

2.12.2 The Minimum Cut Problem 35

2.12.3 Maximum Flows by Augmenting Paths 36

2.12.4 Flow Algorithms and Their Runtimes 39

2.13 Dinitz’s Algorithm . 40

2.14 Almost Unit Capacity Networks 42

2.15 Dinitz’s Algorithm on AUC Networks 44

ix

x contents

3 the densest subgraph problem 47

3.1 Definition and Properties 47

3.2 Bounds on the Maximum Density 53

3.3 Algorithms for the Densest Subgraph Problem 54

3.3.1 0-1 Fractional Programming 54

3.3.2 The Provisioning Problem 55

3.3.3 Goldberg’s Method 56

3.4 Integral Test Values and Smaller Search Intervals . . . 60

3.5 Linear Programs for the Densest Subgraph Problem . . 63

3.6 The Bipartite Orientation Network 65

3.7 Streaming Algorithms 73

4 the orientation problem 75

4.1 The Re-Orientation Algorithm 75

4.2 Kowalik’s Approximation Scheme 81

4.3 Applications and Generalizations 84

5 balanced binary search 87

6 accelerated binary search 91

6.1 Fractional Orientations 93

6.2 Bottleneck Maximum Cardinality Matching 95

7 constant-factor approximations 97

7.1 The Greedy Algorithm 97

7.2 The Algorithm of Asahiro et al. 99

7.3 Kowalik’s Scheme for Fixed ϵ 103

8 arboricity and pseudoarboricity 105

8.1 Forests and Pseudoforests 105

8.2 Matroid Partitioning and Covering Numbers 108

8.3 Runtimes for Computing the (Fractional) Arboricity . . 114

8.4 Bounds for Arboricity and Pseudoarboricity 116

9 conversion of pseudoforests into forests 121

9.1 Conversion by Divide-and-Conquer 122

9.2 Linear-Time Conversions for Small k 125

9.2.1 A Linear-Time 5/3-Conversion 125

9.2.2 A Linear-Time 3/2-Conversion 126

9.2.3 A Linear-Time 4/3-Conversion 127

9.2.4 The Nine Dragon Tree Theorem 133

9.2.5 An Application to Planar Graphs 135

9.2.6 Partitioning a Planar Graph into Three Forests . 135

10 a constructive arboricity approximation scheme 137

10.1 The Surplus Graph . 137

10.2 Exchanging Edges on Cycles 141

10.3 Finding the Exchange Edge 143

11 preprocessing orientations 145

12 experimental comparisons for the orientation

problem 149

12.1 Related Work . 149

12.2 Selection of Algorithms 149

contents xi

12.3 LP Solver and Hardware Configuration 151

12.4 Input Graphs . 151

12.5 Results . 152

13 problems involving connected subgraphs 157

14 the k-cardinality tree problem 159

14.1 Integer Linear Programs 160

14.1.1 Subtour Elimination Constraints 160

14.1.2 A Formulation Based on the Maximum Density 162

14.1.3 An MILP Based on Orientations 163

14.1.4 Additional Cuts 166

15 experimental comparison for k-cardinality trees 169

15.1 Formulations Selected for Comparison 169

15.2 Input Data, Machine Configuration, and Solver Settings 170

15.3 Results . 171

16 the steiner tree problem 177

16.1 Geometric Steiner Tree Problems 177

16.2 The Steiner Tree Problem in Graphs 178

16.3 NP-Completeness and Special Cases 178

16.4 Overview of Approximation Algorithms 181

16.5 The Bidirected Cut Relaxation 182

16.6 The Hypergraphic Relaxation 183

17 iterative randomized rounding 187

17.1 The Algorithm of Byrka et al. 187

17.2 Witness Tree Distributions 192

17.3 Quasi-Bipartite and Claw-Free Instances 199

18 integrality gap lower bounds 207

18.1 Goemans’s Instance Family 207

18.2 Instances Based on Set Cover 208

18.3 Entanglement . 212

18.3.1 Implementation 219

19 further variants of the steiner tree problem 221

19.1 The Prize-Collecting Steiner Tree Problem 221

19.2 The Maximum Weight Connected Subgraph Problem . 221

19.3 Preprocessing Rules for MWCS 222

19.4 Algorithms for MWCS and its Variants 224

20 conclusion and outlook 227

20.1 Problems Solvable in Polynomial Time 227

20.2 NP-Complete Problems 228

bibliography 231

1
I N T R O D U C T I O N

If in a quadrilateral one asks for [. . .]
the shortest connection system in the plane, then [. . .]

you obtain quite an interesting mathematical problem [. . .];
as a matter of fact, I have on occasion considered the rail road connection

between Harburg, Bremen, Hannover and Braunschweig,
and I myself have thought that this problem would be

an excellent prize problem for our students.

— Carl F. Gauß, letter to Heinrich C. Schumacher (1836)
Translated from German [Bra+14]

1.1 historical background and motivation

(a) (b)

Figure 1.1: Examples of Steiner trees in the plane for a set of 70 randomly
generated terminals (dots). The images were created with the
GeoSteiner software package [Juh+18]. (a) A Steiner tree for
Euclidean distances. (b) A Steiner tree for rectilinear distances.

Given a finite set of points in the plane, the Euclidean Steiner tree
problem is to connect them with lines of minimum total Euclidean
length. In order to do so, one may choose additional points where
lines can end. These points are called Steiner points. The connecting
lines in an optimum solution form a tree. An example can be seen in
Figure 1.1a. The problem, which dates from the 19th century [Bra+14],
was shown to be NP-hard [GGJ77], but is not known to be in NP. The
rectilinear variant of the problem, where the Euclidean distance is
replaced by the L1 distance (Figure 1.1b), is NP-complete when the
point coordinates are required to be integers [GJ77]. It has applications
in circuit design, see [GJ77; FR83] for the relevant literature.

1

2 introduction

3

3

3

1

33

1

1

3

Figure 1.2: An instance of the Steiner tree problem in graphs. The squares
are terminal vertices that must be selected, the circles are the
optional Steiner vertices. An optimal solution of cost eleven is
shown with bold edges and blue Steiner vertices. Solutions that
do not use the Steiner vertex in the center have cost of at least
twelve.

The related Steiner tree problem in graphs is one of the best-studied
problems in computer science. The goal is to find a tree of minimum
weight spanning a set of given terminal vertices in an undirected graph
with nonnegative edge weights. Here, the non-terminal vertices are the
optional Steiner vertices. An example can be seen in Figure 1.2. The
problem is a generalization of the minimum spanning tree problem,
in which all vertices are to be spanned. The latter was first described
in 1926 by Borůvka [Bor26] with an application to power grids in
Moravia in mind. While the minimum spanning tree problem can
be solved in polynomial time, the Steiner tree problem in graphs is
NP-complete [PS02]. There are several integer linear programs (ILPs)
that model the problem [GM93; PD03].

The main ingredient of these ILPs is modeling the connectivity of
the subgraph defined by the solution’s assignment of vertex and edge
variables. For this reason, they can be easily adapted to search for
connected subgraphs that minimize (or maximize) a linear function, a
problem that is in general also NP-complete. This problem has appli-
cations in bioinformatics, see for example [Ide+02; Bac+11; Alt+14],
and these applications were the initial motivation for this thesis. In
this area, the vertices typically represent genes or proteins, and the
edge or vertex weights are determined from gene expression values
[Sub+05; Din+08; Gei+11]. In some settings (e.g., [Bac+11]), the input
graph is directed, and the vertices in the solution should be reachable
in the directed sense from a root vertex. This root vertex is interpreted
as the so-called key player in a regulatory cascade. There are other ap-
proaches for identifying key players or otherwise ‘biologically central’
genes, for example via the dominating set problem [Mil+11; Naz+16]
or finding paths of a specified length between certain proteins of
interest [Zha+08].

Another related and well-known NP-complete problem that also
generalizes the minimum spanning tree problem is the k-cardinality

1.1 historical background and motivation 3

(a) (b)

Figure 1.3: (a) A partition of a simple graph into two pseudoforests, indi-
cated by red and blue edges. An orientation of the graph with
maximum indegree two is given by arrowheads. (b) A partition
of the same graph into three forests, indicated in red, blue, and
black. A partition into two forests is not possible.

tree (or k-MST) problem. It asks for a tree of k vertices with minimum
total edge weight. It has applications in oil field leasing and facility
layout planning [Ehr+97].

NP-complete problems can be solved in polynomial time if and
only if the complexity classes P and NP are equal, which is widely
believed not to be true [Aar17]. Hence, one may turn to approxi-
mation algorithms that run in polynomial time. For the Steiner tree
problem in graphs, the currently best approximation algorithm has an
approximation factor of ln(4) + ϵ < 1.387 [Byr+13]. It is based on the
hypergraphic relaxation (HYP) [War98; PD03]. Better approximation
factors can be given in (uniformly) quasi-bipartite instances [Grö+02;
Fun+12; Byr+13], where the hypergraphic relaxation is as strong as
the well-known bidirected cut relaxation (BCR) [CKP10a; Goe+12;
Fun+12]. BCR has great practical value, but is not well-understood.
Its integrality gap is known to lie between 1.16 and 2 [Byr+13].

Since solving above problems is NP-hard, another avenue for practi-
cal considerations is to find connected subgraphs of maximum density.
This so-called densest subgraph problem is solvable in polynomial
time, even with nonnegative vertex and edge weights [Gol84]. The
problem and its variants have been applied to clustering and com-
munity detection [AC09; DGP09; SG10; Ang+14; ELS15], as well as
bioinformatics [Sah+10; Ma+17]. Curiously, the dual problem can
be used as a basis for a mixed-integer linear programming (MILP)
formulation for the Steiner tree problem in graphs and related prob-
lems [Coh10; Alt+14]. In contrast to previous approaches, this MILP
formulation requires only a linear number of constraints and variables.
This connection lead us to investigate the following problems. The
dual problem of the densest subgraph problem is the smallest maxi-
mum indegree fractional orientation problem [Cha00a]. Its integral
variant, which can be used to create data structures for edge mem-
bership queries in a graph [KNR92; CE91; AAR95; AMZ97; BF99], is
equivalent to finding a partition of the graph into the smallest possible

4 introduction

number of pseudoforests [Bez00; Kow06]. This number is called the
pseudoarboricity. An example of an optimal pseudoforest partition
can be seen in Figure 1.3a on the preceding page. The pseudoarboricity
problem is a special case of the matroid partitioning problem and was,
along with the analogously defined arboricity for forest partitions, ad-
dressed specifically by Picard and Queyranne [PQ82] and Gabow and
Westermann [Wes88; GW92; Gab98]. The strong relationship between
pseudoforest and forest partitions can be exploited algorithmically
[Wes88; GW92; Kow06]. While there is an approximation scheme for
the pseudoarboricity, previous approximation schemes [PST91; Kow06;
TG16] for the arboricity were nonconstructive, i.e., only its value was
approximated and no corresponding forest partition was computed.
Figure 1.3b on the previous page shows an optimal forest partition of
a graph.

The arboricity is an often-used measure for the density of a graph.
Many results are stated for graphs of bounded arboricity, where some
NP-complete problems become tractable [AG08; ELS13]. For several al-
gorithms, it is possible to show better runtime estimates [CN85; GV08;
ELS13] or approximation factors [BU17]. However, only a minority of
algorithms actually use forest partitions explicitly.1 Distributed algo-
rithms that do use forest partitions exist for the maximal independent
set and graph coloring problems [BE10] and the minimum dominating
set problem [LW10].

1.2 structure and outline of the thesis

This thesis deals with two classes of problems regarding connected
subgraphs: polynomial-time solvable problems and NP-complete prob-
lems. Well-known definitions and theorems required for the thesis are
given in Chapter 2. These are from graph theory, probability theory,
complexity theory, algorithm design, linear algebra, matroid theory,
linear programming, and network flow theory. They are typically cov-
ered to a large extent in computer science curricula and repeated here
for completeness. It is assumed the reader is familiar with set theory
and calculus on the undergraduate level. The theory of almost unit ca-
pacity networks in Section 2.15 was published in [Blu16] as a result of
the writing of this thesis. These results are, however, straightforward
generalizations of theorems by Even and Tarjan [ET75].

Chapters 3 to 12 deal with polynomial-time solvable problems: the
densest subgraph problem, the smallest maximum indegree orienta-
tion problem, and the pseudoarboricity and arboricity problems.

In Chapters 3 and 4, we give an extensive review of the literature
on the densest subgraph problem and its dual, the smallest max-

1 In some papers (e.g., [AMZ97]), forest partitions are used in order to obtain orien-
tations of small maximum indegree, but this could be achieved from pseudoforest
partitions.

1.2 structure and outline of the thesis 5

imum (fractional) indegree orientation problem. We exhibit some
mistakes made in these papers, and complement important results
by investigating the relationship of various approaches and giving
alternative proofs. We recast the balanced binary search technique,
which was used by Gabow and Westermann [Wes88; GW92] for the
pseudoarboricity problem, in terms of flows for the smallest maximum
indegree orientation problem in Chapter 5. This technique reduces the
logarithmic factor incurred by a binary search. Then, using Kowalik’s
approximation scheme [Kow06], we shrink the search interval and
reduce this factor even further in Chapter 6.

In Chapter 7, we concern ourselves with a linear-time algorithm
that can compute a 1/2-approximation for the densest subgraph prob-
lem and 2-approximations for the pseudoarboricity and arboricity
problems [Epp94; AAR95; AMZ97; Cha00a; Bez00; GP07]. We show
that a modification of this algorithm for the pseudoarboricity problem
[Asa+07], which has a slightly better approximation factor and was
previously known to run in quadratic time, can be implemented in
linear time. We also reduce the runtime of Kowalik’s approximation
scheme for fixed ϵ > 0 by terminating the binary search early.

The smallest maximum indegree orientation problem is equivalent
to the pseudoarboricity problem, which is closely related to the ar-
boricity problem. These latter two are special cases of the covering
problem for matroids. They are discussed in Chapter 8.

We propose conversions of a partition of k pseudoforests into a
partition of k+ 1 forests in Chapters 9 and 10: For k ≤ 3, the conversion
runs in linear time. For k ≥ 4, we give an algorithm that runs in
near-linear time when k is fixed. This improves upon the divide-
and-conquer conversion by Gabow and Westermann [Wes88; GW92].
We also show that one of the runtime analyses of their algorithm is
erroneous. For every fixed ϵ > 0, our results imply a constructive
near-linear time (1 + ϵ)-approximation algorithm for the arboricity.

In Chapter 11, we use the 2-approximation algorithm from Chapter 7

to obtain a linear-time preprocessing that reduces the graph size while
preserving the maximum density and (pseudo-)arboricity. Using an
algorithm of Gabow [Gab98], we are able to show a new conditional
runtime estimate for the pseudoarboricity problem.

An experimental runtime comparison of algorithms for the pseu-
doarboricity problem based on maximum flow algorithms and linear
programs is conducted in Chapter 12.

Chapters 13 to 19 deal with NP-complete subgraph problems. Chap-
ter 13 gives an introduction to the topic. In Chapter 14, we investigate
an integer linear program for the k-cardinality tree problem based
on the maximum density and compare it to existing formulations.
We show that the intersection of the polytope defined by an MILP
based on orientations [Coh10; Alt+14] and the polytope defined by the
generalized subtour elimination constraints (GSEC) [Fis+94; Chi+10]

6 introduction

is a subset of either of these polytopes. Experiments for the MILP,
GSEC and the intersection are reported in Chapter 15.

Chapters 16 to 18 deal with the Steiner tree problem in graphs. We
review existing algorithms and ILPs for the problem in Chapter 16.
A randomized approximation algorithm by Byrka et al. [Byr+13]
based on the hypergraphic relaxation is reviewed in Chapter 17. We
modify the analysis for a better approximation factor of 1.354 in the
special case of claw-free instances, and 1.25 for claw-free instances
with uniform weights. Chapter 18 deals with instances that exhibit
a large integrality gap for the bidirected cut relaxation. Based on
a new idea for entangling two instances derived from the set cover
problem, we conduct an experimental study in hope to find instances
with larger integrality gaps than previously known, to no avail.

In Chapter 19, we review the maximum weight connected subgraph
problem. We devise some preprocessing rules that can reduce in-
stances considerably, which is demonstrated on real-world data, and
briefly review existing algorithmic approaches.

The thesis is concluded in Chapter 20 with several open questions
for future research.

1.3 collaboration and publications

With the exception of the widely known theorems in the introductory
chapter, all results that are not explicitly designated otherwise are
contributions by the author.

Some results from Chapters 3, 4, 6, 11, and 12 were part of a
conference paper at the 18th Workshop on Algorithm Engineering and
Experiments (ALENEX 2016) [Blu16].

The results of Chapters 7 and 9 were made public in a preprint
on arXiv2. The results of Chapter 10 were obtained in collaboration
with Frank Fischer and have been accepted to the 46th International
Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2020), which will be held in Limassol, Cyprus,
January 20-24, 2020. An extended preprint that contains all these
results is available.3

An earlier paper [Alt+14] of the author on a problem of connected
subgraphs with k vertices (see Chapter 14) is cited because a portion
of it was done as part of his Master’s curriculum, and it contains con-
siderable contributions by the other authors. Its results are extended
in this thesis.

The preprocessing rules from Chapter 19 were presented at the 11th
DIMACS Implementation Challenge workshop [AB14] in a collabora-
tion with Ernst Althaus.

2 https://arxiv.org/abs/1811.06803v2

3 https://arxiv.org/abs/1811.06803

https://arxiv.org/abs/1811.06803v2
https://arxiv.org/abs/1811.06803

2
P R E L I M I N A R I E S

On a visit to the NASA space center,
President Kennedy spoke to a man

sweeping up in one of the buildings.
“What’s your job here?”, asked Kennedy.

“Well, Mr. President,” the janitor replied,
“I’m helping to put a man on the moon.”

— Anonymous

In this chapter, we give the theoretical foundations for the follow-
ing chapters. The material in Sections 2.1-2.13 is frequently covered
in mathematics and computer science curricula. The lemmata and
theorems in Sections 2.14 and 2.15 are slightly generalized, but follow
the original proofs quite closely and should hence not be regarded as
proper contributions.

2.1 basic definitions

2.1.1 Set-Theoretic Foundations

As the basis of our studies, we use Zermelo–Fraenkel set theory,
although we nowhere near employ its full power.

We denote the set of natural numbers {1, 2, 3, . . . } by N and the set
of nonnegative integers {0, 1, 2, 3, . . . } by N0. For n ∈ N, we denote
[n] = {1, . . . , n}. The set of integers is denoted by Z, the set of rational
numbers by Q, and the set of real numbers by R. To restrict these sets
to nonnegative or positive numbers, we use sub- and superscripts as
in R+

0 and R+, respectively. The empty set is denoted by ∅ and the
power set of a set A by P(A).

We assume familiarity with propositional calculus (see Section 2.1.2)
and the existential and universal quantifiers ∃, ∀, as well as set-
theoretic relations and operations such as the element (∈) and subset
(⊆) relations, set product (×), set difference (\), intersection (∩), and
union (∪). Two sets A, B are disjoint if A ∩ B = ∅. The disjoint union,
i.e., the union together with the assertion that the sets are disjoint, is
denoted by ∪̇. If a set A is the disjoint union of a family of nonempty
sets, this family forms a partition of A. The cardinality of a finite set A
is denoted by |A|. For convenience, we define the set of ‘unordered
pairs without loops’, (A

2) := {{a, b} | a, b ∈ A, a ̸= b}.
Given two sets A, B, a binary relation ∼ is a subset of A × B. We

write a ∼ b ⇔ (a, b) ∈∼. If A = B, we say that ∼ is reflexive if a ∼ a

7

8 preliminaries

for all a ∈ A, symmetric if a ∼ b⇒ b ∼ a for all a, b ∈ A, and transitive
if a ∼ b, b ∼ c ⇒ a ∼ c for all a, b, c ∈ A. A binary relation that is
reflexive, symmetric and transitive is called an equivalence relation. The
equivalence class of a ∈ A is the set {b ∈ A | b ∼ a}. The equivalence
classes of A form a partition of A, denoted by A/∼.

A function f : A → B is a relation f ⊆ A× B that is left-total and
right-unique, i.e., every element in A is mapped to a unique element in
B. The set f (X) := { f (x) | x ∈ X} is the image of f on X ⊆ A.

A function that maps any two distinct elements in A to distinct
elements in B is called injective. If for every b ∈ B, there exists a ∈ A
such that a is mapped to b, the function is called surjective. A function
that is both injective and surjective is called bijective. A set S is countable
if it is finite or there exists a bijection to N.

For n ∈N, the symmetric group Σn is the set of bijections on [n]. For
σ ∈ Σn, the set of its inversions is

inv(σ) := {(i, j) ∈ [n]2 | i < j, σ(i) > σ(j)}

and its signum is sgn(σ) := (−1)|inv(σ)|.
We define the open and closed intervals

(a, b) := {x ∈ R | a < x < b}, [a, b] := {x ∈ R | a ≤ x ≤ b},

respectively, and likewise the half-open intervals (a, b] and [a, b).
The ceiling ⌈·⌉ : R→ Z and floor functions ⌊·⌋ : R→ Z are defined

as

⌈x⌉ := min{n ∈ Z | n ≥ x}, ⌊y⌋ := max{n ∈ Z | n ≤ x}.

A function f : A× A→ R+
0 is a metric or distance if for all a, b, c ∈ A,

1. f (a, b) = f (b, a),

2. f (a, b) = 0⇔ a = b,

3. f (a, c) ≤ f (a, b) + f (b, c).

We assume the reader is familiar with norms such as the absolute
value and the Euclidean norm. A norm ∥·∥ on a vector space A
induces a metric via f (a, b) = ∥a− b∥.

2.1.2 Propositional Calculus

Boolean variables x1, . . . , xn take values in {0, 1}, where 1 and 0 are
interpreted as ‘true’ and ‘false’, respectively. An element in {0, 1}n is
called an assignment to x1, . . . , xn. Boolean formulae are defined induc-
tively as follows:

• 1 and 0 are formulae.

• A Boolean variable x is a formula.

2.2 graphs 9

• If ϕ is a formula, so is (ϕ).

• The negation ¬ϕ := 1− ϕ (‘not’) of a formula is a formula.

• The conjunction ϕ ∧ ψ := min(ϕ, ψ) (‘and’) of formulae ϕ, ψ is a
formula.

We use the convention that ¬ has higher precedence than ∧, but
expressions in parentheses are evaluated first. For convenience, we can
define further connectives, in further descending order of precedence:

• Disjunction: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) (‘or’),

• Implication: ϕ⇒ ψ := ϕ ∧ ¬ψ,

• Equivalence: ϕ⇔ ψ := ϕ⇒ ψ ∧ ψ⇒ ϕ.

A literal is either a Boolean variable x or its negation ¬x. An assign-
ment of x1, . . . , xn for which ϕ evaluates to 1 is called satisfying. If a
satisfying assignment exists, ϕ is called satisfiable. Two formulae ϕ, ψ

are equisatisfiable if they are both satisfiable or both not satisfiable.
A formula ϕ(x1, . . . , xn) is in conjunctive normal form (CNF) if

ϕ =
⋀︂

i

⋁︂
j

lij

where each lij is a literal of one of the x1, . . . , xn. The formula is in
k-CNF if every clause Ci =

⋁︁
j lij has at most k literals.

2.2 graphs

2.2.1 Vertices and Edges

Let V be a nonempty set and let E ⊆ V × V. Elements of V are
called vertices and elements of E are called (directed) edges. For an
edge (u, v) ∈ E, u and v are called its endpoints or end vertices, and
u is v’s predecessor. We sometimes write u → v or v ← u for (u, v)
to emphasize the direction. The tuple (V, E) is called a graph. In
this thesis, we will only deal with finite graphs, i.e., V is always a
finite set. We implicitly assume that V = {1, 2, . . . , |V|} when it is
useful. A graph is said to be complete if E = V × V. Sometimes, we
allow multiple edges between two vertices, this can be formalized by
a function m : E→N0. Such a graph is called a multigraph.

For convenience, we will sometimes use the word node for a vertex
in auxiliary structures to distinguish it from vertices in the input graph.
In flow networks (Section 2.12), we will call directed edges arcs.

10 preliminaries

2.2.2 Undirected and Simple Graphs

A graph is undirected if for every (u, v) ∈ E, it follows that (v, u) ∈ E.
In this case, we treat (u, v) and (v, u) as equivalent, and sometimes
write uv. Formally, this corresponds to a set E/∼, where ∼ is the
equivalence relation defined by (u, v) ∼ (v, u). However, we simply
write E for short, and an edge is only counted once in |E|.

A graph is loop-free if (v, v) /∈ E for all v ∈ V. An undirected,
loop-free graph is called simple. We will often refer to simple graph
as graphs for short, as they are our main focus. The definition of
completeness carries over in the obvious way. A complete simple
graph on n vertices is denoted by Kn.

2.2.3 Adjacency and Incidence

In simple graphs, an edge e is called incident to u ∈ V if one of its
endpoints is u, and in this case u is also said to be incident to e. The
endpoints of e are adjacent to each other. The set of vertices adjacent
to a vertex v is called its neighborhood N(v). A vertex with an empty
neighborhood is called isolated. If two distinct edges share an end
vertex, they are also said to be adjacent.

The incidence matrix of a simple graph is a matrix (Section 2.9)
I ∈ {0, 1}|V|×|E| where every row is associated with a vertex and each
column with an edge. Every column corresponding to an edge uv
contains exactly two ones, one in row u and one in row v.

The adjacency matrix of a simple graph is a matrix A ∈ {0, 1}|V|×|V|
with Auv = 1 if and only if uv ∈ E. For runtime and space efficiency,
it is often necessary to store only the neighbors of a vertex in a list,
the adjacency list.

A simple graph G = (V, E) is said to be bipartite if there exists a
partition V = V1 ∪̇ V2 such that every edge has one endpoint in V1

and one in V2.
Two graphs G1 = (V1, E1), G2 = (V2, E2) are said to be isomorphic if

there exists a bijection

f : V1 −→ V2

such that (u, v) ∈ E⇔ (f (u), f (v)) ∈ E2.

2.2.4 Degrees and Orientations

In directed graphs, the integer |{(u, v) | u ∈ V}| for v ∈ V is called
the indegree of v, denoted by indegG(v). Likewise, for a vertex u ∈ V
the integer |{(u, v) | v ∈ V}| is called the outdegree of u, denoted by

2.2 graphs 11

outdegG(u). We drop the index where the graph is clear from context.
Clearly, we have

∑
v∈V

indeg(v) + outdeg(v) = |E|.

In a simple graph, the size of the neighborhood of u is called the
degree of u, denoted by degG(u). The degree sum formula, due to Euler
[Eul36], states that for a simple graph G = (V, E),

∑
v∈V

deg(v) = 2|E|. (2.1)

This is because by summing the degrees, every edge is counted once
from each of its endpoints. We will frequently use this formula
throughout this thesis. The maximum degree among the vertices in a
simple graph G is denoted by ∆(G). Given a simple graph G = (V, E),
an orientation of G is a directed graph G⃗ = (V, E⃗) with |E⃗| = |E| in
the aforementioned sense and E ⊆ E⃗, i.e., for every edge in G one of
two possible directions is chosen. If for some d ∈N0, indegG⃗(v) ≤ d
holds for every v ∈ V, then G⃗ is said to be a d-orientation. Fractional
orientations will be introduced in Section 3.5.

2.2.5 Subgraphs, Induced Subgraphs, and Matchings

A graph H = (VH, EH) is a subgraph of a graph G = (V, E) if VH ⊆ V
and (u, v) ∈ EH ⇒ (u, v) ∈ E. We write H ⊆ G for short and H ⊊ G if
EH ̸= E. For subgraphs H1, H2 ⊆ G, we use the shorthand H1 ∪ H2 for
the graph that consists of the union of the edges of H1 and H2 on the
union of the vertices of H1 and H2. We analogously define H1 ∩ H2,
with the exception that the intersection of the vertex sets must not be
disjoint.

A subgraph H is induced if from (u, v) ∈ E and u, v ∈ VH it follows
that (u, v) ∈ EH , i.e., every edge present in the graph is always present
in the subgraph if its endpoints are in the subgraph. The subgraph
induced by a nonempty set S ⊆ V is denoted by G[S]. The set of edges
of G[S] is denoted by E[S]. Likewise, for a set T ⊆ E, we define V[T]
to be the set of all vertices that are endpoint of at least one edge in T.

A matching is a subset of edges M ⊆ E such that every vertex in
(V, M) has at most one neighbor.

2.2.6 Paths, Cycles, and Connected Components

In a (directed) graph, a path of length n− 1 is a sequence of vertices
(v1, . . . , vn) such that (vi, vi+1) ∈ E for i = 1, . . . , n − 1. We will
sometimes write v1 → v2 → v3 etc. for a clearer presentation of paths,
and v1 ⇝ vn to denote some unspecified path from v1 to vn. A path
forms a cycle if vn = v1 and n ≥ 2.

12 preliminaries

In a simple path, no vertex may be visited twice. A simple cycle is a
cycle that is a simple path (in the sense that v1 = vn is only visited
once). In simple graphs, we are usually only interested in simple
cycles, thus we will call them cycles for short. The only exception in
this thesis are Euler tours, in which every edge is visited exactly once,
but a vertex may be visited several times. A simple graph is said to be
Eulerian if it has an Euler tour.

Theorem 2.2.1 ([Eul36; HW73]). A simple graph G is Eulerian if and only
if G is connected and the degree of every vertex is even.

Hierholzer’s algorithm [HW73] finds an Euler tour, if one exists, in
linear time.

If there is a cycle present in a graph, it is called cyclic, and acyclic
otherwise. Note that in a simple graph, a simple cycle must consist
of at least three vertices, i.e., two vertices joined by an edge are not
considered a simple cycle. In directed graphs, however, 1-cycles (loops)
and 2-cycles can exist.

A simple graph is said to be connected if there is a path from every
u ∈ V to every v ∈ V. Define u ∼c v if and only if there is a path
from u to v. This is an equivalence relation on V, and we call the
subgraphs induced by the equivalence classes in V/∼c the connected
components of the graph. If a (sub-)graph (V, E) is connected, it is said
to be spanning V.

A graph is k-(vertex)-connected if it has at least k vertices and remov-
ing any k vertices does not disconnect the graph. 2- and 3-connected
graphs are called biconnected and triconnected, respectively. It is
possible to determine the biconnected and triconnected components of
a graph in linear time [HT73]. A vertex that is in several biconnected
components is called a cut vertex; removing such a vertex disconnects
the graph.

2.2.7 Trees and Planarity

A forest is an acyclic simple graph. A tree is a connected forest. A
vertex of degree at most one in a tree is called a leaf. If every tree in a
forest is a path, the forest is said to be linear. A tree of n ∈N vertices
is a star if it has one vertex of degree n− 1 and the other vertices (if
any) are leaves. A star of four vertices is called a claw.

The following elementary lemma is quite useful, and we shall use it
several times in this thesis.

Lemma 2.2.2. A simple graph (V, E) is a tree if and only if it is acyclic and
|E| = |V| − 1.

A simple graph G = (V, E) is connected if and only if it has a
spanning tree, i.e., there is a subgraph with vertex set V that is a tree.

A rooted tree is a tree with a distinguished vertex r ∈ V, the root.
The height of a rooted tree is the maximum length of a path from r to

2.3 asymptotics 13

any vertex v ∈ V. A binary tree is a tree where the degree of every
vertex is bounded by three and the root’s degree is bounded by two.
A complete binary tree has 2i vertices at height i for every i = 0, . . . , h,
where h is the height of the tree.

Typically, one imagines the edges of the root as directed away
from it, and recursively the neighbors of the root as roots of their
respective subtrees, such that there is exactly one directed path from r
to every vertex v ∈ V. A directed graph with this property is called
an arborescence.

A topological ordering of a directed graph G = (V, E) is an ordering
(v1, . . . , v|V|) of the set V such that vi → vj implies i < j.

Lemma 2.2.3. A topological ordering of a directed graph G exists if and
only if G is acyclic.

A graph is called planar if it can be represented in the plane by
|V| distinct points and simple curves for every edge such that curves
only intersect in the vertex points. We omit a formal definition here.
The plane is partitioned by such an embedding into faces. The single
unbounded face is also called the outer face.

2.3 asymptotics

When talking about the runtime of an algorithm, it is often not that
important to determine the exact number of steps it takes. Rather, we
are usually interested in an upper bound on the number of steps that is
tight up to a constant factor and holds for all sufficiently large inputs.
For a simplified presentation, we exclude zero from the definition
here.

Let f : R+ → R+. We define

O(f) := {g : R+ → R+ | ∃c > 0 ∀x ∈ R+ : g(x) ≤ c f (x)},
Ω(f) := {g : R+ → R+ | f ∈ O(g)},
Θ(f) := O(f) ∩Ω(f).

Intuitively speaking, O(f) (read: ‘big-oh of f ’ or sometimes ‘oh of f ’)
is the set of functions that dominate f up to a constant factor (asymp-
totic upper bounds), Ω(f) is the set of functions that are dominated by
f up to a constant factor (asymptotic lower bounds), and Θ(f) is the
set of functions that are asymptotically equivalent to f . Sometimes,
one additionally uses

o(f) := {g : R+ → R+ | ∀c > 0 ∀x ∈ R+ : g(x) < c f (x)},
ω(f) := {g : R+ → R+ | f ∈ o(g)}.

The above definitions can be generalized to functions f : (R+)n → R+,
which is useful when analyzing graphs in terms of |V| and |E|, or
when the runtime in an approximation scheme depends on an error

14 preliminaries

parameter ϵ > 0. We follow the widespread notation that g ∈ Õ(f)
(read: ‘soft-oh of f ’) if g ∈ O(f logc f) for some c > 0. In other
words, Õ hides polylogarithmic factors. For all asymptotic estimates,
the baseless logarithm log is used because a change of base only
constitutes a multiplication by a constant factor.

A function that is sometimes used in algorithm analysis is the
iterated logarithm (to the base two), which for x > 0 is defined as

log∗(x) :=

⎧⎨⎩0, x ≤ 1,

1 + log∗(log2(x)), x > 1.

It counts how many times the binary logarithm has to be applied to
reach a small constant (here, one). It grows very slowly, for example,
consider

x = 22222

≈ 2 · 1019,728.

The iterated logarithm of x is the height of the exponential tower,
namely log∗(x) = 5. This function can be regarded as constant for all
practical purposes.

For ease of notation, we define functional iteration as follows:

f (i)(n) :=

⎧⎨⎩n, if i = 0,

f (f (i−1)(n)), if i ≥ 1.

A function that grows even more slowly than the iterated logarithm
is the inverse Ackermann function. Ackermann [Ack28] and Sudan
[Sud27] showed the existence of computable functions (Section 2.5)
that grow faster than all primitive-recursive functions and are, in
particular, not primitive-recursive. A popular simplified variant was
described by Péter [Pét35]. The textbook of Cormen et al. [Cor+01]
uses the following definition. For k ≥ 0 and j ≥ 1, define

Ak(j) :=

⎧⎨⎩j + 1, if k = 0,

Aj+1
k−1(j), if k ≥ 1.

The inverse Ackermann function is defined as follows:

α(n) := min
k∈N0
{Ak(1) ≥ n}.

We have α(n) ≤ 4 for all n ≤ 22048 ≈ 3.23 · 10616, and this is a rather
conservative estimate [Cor+01]. La Poutré [Pou90] uses a different,
but asymptotically equivalent definition of the Ackermann function.

2.4 probability theory 15

We omit the details and only state the first three ‘row inverses’ to
illustrate their slow growth:

α(1, n) := ⌈log n⌉ ,

α(2, n) := min
k∈N0

{︂⌈︂
log(k) n

⌉︂
= 1

}︂
= log∗(n),

α(3, n) := min
k∈N0

{︂⌈︂
log∗

(k)
n
⌉︂
= 1

}︂
,

· · ·

In this thesis, we will sometimes assume for runtime estimates that no
vertex is isolated, and thus the number of edges |E| is at least half the
number of vertices. We do this because for the problems we consider,
isolated vertices can be ignored, removed or dealt with separately.
Thus, we use O(|E|) instead of O(|V|+ |E|) in many places.

Often one considers a family (an indexed set) of instances, typically
graphs, with certain properties. Sometimes better asymptotic estimates
can be given for a certain family.

2.4 probability theory

We give an introduction to (discrete) probability theory. Since the
set of elementary events is always countable in this thesis, we can
use its power set as the set of all events. (This is an example of a
σ-algebra.) We largely follow the textbook by Mitzenmacher and
Upfal [MU05], which also uses this approach for a shorter and more
accessible presentation.

Definition 2.4.1. Let S be a countable set, the set of elementary events.
A subset A ⊆ S is called an event. A discrete probability distribution on
S is a function

Pr : 2S → [0, 1]

that satisfies for a sequence (Ai)i∈N of disjoint events Ai ⊆ S

Pr(S) = 1,

Pr

(︄⋃︂
i∈N

Ai

)︄
= ∑

i∈N

Pr(Ai).

We write Pr[·] instead of Pr(·). Two events A, B ⊆ S are said to be
independent if Pr[A ∩ B] = Pr[A] · Pr[B].

The following statements are readily proved: For any two events
A, B, we have Pr[A∪ B] = Pr[A] + Pr[B]− Pr[A∩ B]. The union bound
is the simple fact

Pr

(︄⋃︂
i∈N

Ai

)︄
≤ ∑

i∈N

Pr(Ai)

16 preliminaries

for events (Ai)i∈N. We say that an event A depending on n ∈ N

happens with high probability if Pr[A] ≥ 1− n−c for some c > 0.

Definition 2.4.2 (Random Variable). Let X : S → R be a function,
a real-valued random variable, which we will call random variable for
short. For x ∈ R, we write ‘X = x’ as a shorthand for the event
{s ∈ S | X(s) = x}. Two random variables X, Y are independent if for
all V, W ⊆ R, the events

A = {s ∈ S | A(s) ∈ V}, B = {s ∈ S | B(s) ∈W}

are independent.

Definition 2.4.3 (Expected Value). The expected value (or expectation)
of a random variable X is

E[X] := ∑
x∈R

x Pr[X = x],

if it exists.

The average is a special case of the expected value for the uniform
distribution, where all elementary events have equal probability.

Theorem 2.4.4 (Linearity of Expectation). Let X, Y be a random variables,
and a ∈ R. Then

E[aX + Y] = aE[X] + E[Y].

Note that the above theorem does not require independence of the
random variables. As we shall consider an algorithm that may poten-
tially run endlessly in Chapter 17, we need the following extension to
infinite sums of expected values.

Theorem 2.4.5. Let (Xi)i∈N be a sequence of real-valued random variables
with ∑i≥1 E[|Xi|] < ∞. Then

E

[︄
∑
i≥1

Xi

]︄
= ∑

i≥1
E[Xi]. (2.2)

We next turn to conditional probabilities.

Definition 2.4.6. Let A, B be events such that Pr[B] > 0. The condi-
tional probability that event A occurs given that B occurs is

Pr[A | B] :=
Pr[A ∩ B]

Pr[B]
.

If A, B are independent, we have Pr[A | B] = Pr[A], which is
intuitive.

2.4 probability theory 17

Definition 2.4.7. Let X be a random variable and let A be an event
with Pr[A] > 0. Then the conditional expectation of X given that A
occurs is

E[X | A] := ∑
x∈R

x Pr[X = x | A].

The following lemma is obvious.

Lemma 2.4.8. Let X, Y be random variables. Then

E[X] = ∑
y∈R

Pr[Y=y]>0

Pr[Y = y]E[X | Y = y].

2.4.1 The Coupon Collector Problem

Imagine a collector buys items, and each item comes with one of n
distinct coupons, uniformly distributed. How many items must the
collector buy in expectation until she has collected all coupons? Let ei
denote the expected number of buys the collector has to make in order
to increase the number of distinct collected coupons from i to i + 1.
When the next buy is made, the coupon has not been collected yet with
probability (n− i)/n. It has been collected already with probability
i/n, in this case we are in the same situation as before with i distinct
coupons. Hence

ei = 1 +
i
n

ei. (2.3)

It can be shown1 that ei < ∞, therefore we may rearrange (2.3) to

ei =
n

n− i
. (2.4)

The expected number of buys is now

n−1

∑
i=0

ei =
n−1

∑
i=0

n
n− i

= n
n

∑
i=1

1
i
= nHn,

where Hn is called the n-th Harmonic number, which is bounded as
O(log n). The standard proof is via the lower sum of∫︂ x

1

1
s

ds = ln x.

A proof that avoids calculus is possible via proving ∑2k−1
i=1

1
i ≤ k by

induction on k. We can conclude that O(n log n) buys have to be made
in expectation in order to collect all coupons.

1 In fact, ei is geometrically distributed. However, only assuming that ei is finite, its
value follows from the proof at hand.

18 preliminaries

2.5 algorithms and machine models

An algorithm is a finite set of instructions that is run on an input and,
in case it terminates, has an output. Formally, it can be defined as
a Turing machine [Tur36], which can be shown to be equivalent to a
program on a random-access machine [CR73]. The latter is similar to
present-day computers. We will give a brief overview.

A random-access machine (RAM) has registers in which it can store
integers. Rational numbers can be represented with two integers.
Some of these registers may hold the input value(s), and some may
be used for the output. The input size is the total length of the input
values in binary representation. One designated ‘working register’
is called accumulator, it holds the result of the current computation
and is initially zero. An operation such as ‘ADD 5’ would cause the
accumulator to increase its content by 5. Basic operations are addition,
subtraction, multiplication and division. They can also address a
register rather than a constant, for example ‘ADD *5’ to add the
content of register 5 to the accumulator.

A program for a random access machine is a finite sequence of
instructions. After an instruction has been carried out, the next in-
struction in the sequence is loaded. When the end of the sequence
has been reached, the program halts and its output is in the registers.
In addition to the arithmetic operations described above, there is an
operation ‘JZERO i’ that jumps to instruction number i if the accumu-
lator’s content is zero, otherwise the next instruction is loaded. It is
easy to see that loops can be implemented using the JZERO operation
and registers for counting.

An algorithm is said to be partially correct if it outputs the correct
solution (with regard to the task we expect it to do) if it terminates. If
in addition the algorithm always terminates, it is said to be (totally)
correct.

An obvious obstacle are irrational numbers, which cannot be rep-
resented exactly in a computer in an explicit way.2 We will assume
that either only natural numbers are allowed in registers (negative
numbers and fractions can be represented with additional registers),
or that the machine is powerful enough to somehow handle irrational
numbers without an actual binary representation. Even in the latter
scenario, irrational numbers may be problematic. For example, the
Ford–Fulkerson algorithm need not terminate for irrational capacities,
but there are algorithms that always terminate (see Sections 2.12.4
and 2.13). We will also state theorems such as ‘Given a flow, it can be
converted into . . . ’. Even if the total value of the flow is an integer,
the flow going through an arc could be, say, π and on another it
could be 4−π, adding to 4. Reasonable maximum flow algorithms on

2 A subset of the irrational numbers are the uncomputable numbers. For such a number,
no algorithm exists that can compute the i-th digit in finite time for every index i.

2.6 complexity classes 19

networks with rational capacities do not introduce irrational numbers,
however.

A tricky question a theoretical computer scientist has to deal with
is how to count the number of computational steps or the cost of
the operations carried out by an algorithm, and which operations
algorithms are allowed to be performed in the first place. The number
of steps are often referred to as time, as they directly translate to time
in the physical sense for a given number of operations per second.
The maximum amount of space the algorithm requires at any time
during the computation is also sometimes of interest.

A precise way of accounting is the logarithmic cost model (or Turing
machine model), in which the number of bits involved in an operation
is counted. This model is reasonable when the numbers during the
computation become large.

In the uniform cost model (or arithmetic model), every operation
costs a single unit. This is somewhat reasonable because current pro-
cessor architectures perform an addition of two 64-bit numbers ‘in one
go’ (taking a few clock cycles), and not ‘bit-by-bit’. This limiting size is
called the word size. If the operands of an operation exceed 64 bits, the
processor has to perform multiple 64-bit operations. If, for example,
the edge capacities in some graph-theoretic problem are bounded by
264, which they are for most applications, the uniform cost model is
a good choice. It suffices for the reader to assume the uniform cost
model for the results in this thesis. However, for complexity-theoretic
considerations, machines with unlimited precision are unreasonably
powerful [BMS81].

Fredman and Willard introduced the transdichotomous model [FW93].
It assumes that multiplication, addition and their inverse operations
can be performed in constant time on numbers of size O(log n), where
n is the size of the total input. This is a reasonable compromise
between the two models (hence the name).3 The shift from 32-bit
architectures to 64-bit architectures in the 2000s could be seen as such
an adaptation of the machines to growing demands. We shall use this
model as a formal basis in this thesis unless stated otherwise.

2.6 complexity classes

Problems in computer science can be stated in the form of yes-or-no
questions (decision problems), as tasks of determining an optimal
value (evaluation problems), and of finding a solution that attains the
optimal value (search problems).

Formally, decision problems are represented as sets of words over
a finite set, the alphabet. Given an alphabet Σ, the set Σ∗ denotes all
finite tuples, called words or strings, that can be formed with elements

3 Note that when sorting integers, the transdichotomous model is powerful enough to
break the Ω(n log n) lower bound for comparison-based sorting [FW93].

20 preliminaries

in Σ. This includes the unique empty word of length zero. A set L ⊆ Σ∗

is referred to as a language, or occasionally (somewhat imprecise) as a
problem. It is sufficient to consider the binary alphabet {0, 1}, other
alphabets can be simulated by appropriate encoding. The characteristic
function of L is the indicator function

χL : Σ∗ −→ {0, 1}

with χL(x) = 1⇔ x ∈ L.
If there is an algorithm that computes a function f , i.e., outputs

the function value f (x) for every argument x in finite time, then f
is called computable. If the characteristic function of a language L is
computable, L is said to be decidable. There are undecidable problems,
the most notable being the halting problem [Tur36; Soa16].

The decidability of problems is investigated in computability theory.
On the other hand, complexity theory focuses on decidable prob-
lems, and further distinguishes them according to their time or space
complexity, to name the most commonly measured resources. Of
particular interest are problems that can be decided in polynomial time
(usually measured on a Turing machine), where the runtime of an
algorithm is bounded by a polynomial in the input size.4 The class of
these problems is denoted by P. Cobham’s thesis [Cob65] identifies
problems that can be efficiently solved in practice with problems in the
class P. While the thesis has proved its worth in many cases, a runtime
of, say, O(n1000) is clearly prohibitively large even for moderate values
of n. In fact, the time hierarchy theorem [HS65; AB09] guarantees
that problems exist that are solvable in O(n1000) time but not in, say,
O(n999) time. While the runtime in complexity theory usually refers
to Turing machines, a random-access machines can simulate a Tu-
ring machine running in time O(T(n)) in time O(T(n)3) [CR73]. The
following definitions hence apply for random-access machines as well.

The class NP is the set of problems X that can be verified by an
algorithm V that runs in polynomial time, the verifier: An instance
I ∈ Σ∗ is in X if and only if there exists a certificate C such that V(I, C)
outputs 1 in polynomial time.

Intuitively speaking, problems can be transformed into other prob-
lems such that solving the transformed problem solves the original.
A (many-one) reduction from A ⊆ Σ∗ to be B ⊆ Γ∗ is a computable
function f : Σ∗ → Γ∗ with a ∈ A ⇔ f (a) ∈ B. If the reduction can
be computed in polynomial time, it is said to be a polynomial-time
reduction or Karp reduction. In this case, we write A ≤p B.

There is another, more general type of reduction that amounts to
calling an algorithm as a subroutine (‘black box’): A language A is

4 One further distinguishes strongly and weakly polynomial time. An algorithm that
uses polynomial space and whose number of steps in the unit-cost model is bounded
by a polynomial in the number of integers in the input is said to be strongly polynomial.
It can then be turned into a polynomial-time algorithm in the logarithmic cost model.
Otherwise, it is said to be weakly polynomial.

2.6 complexity classes 21

said to be Turing-reducible to B if A can be decided given an oracle for
B: The algorithm is given the power to query whether a string is in B;
the answer to this question is correctly returned.5 If in addition, the
algorithm runs in polynomial time, in particular with a polynomial
number of polynomially-sized queries to the oracle, A is said to be
Cook-reducible to B. While Cook’s original paper [Coo71] uses Cook
reductions to define NP-hardness, most textbooks use the simpler
Karp reductions.

A language L is said to be NP-hard if K ≤p L for every K in NP. If
a language is both in NP and NP-hard, it is called NP-complete. It
is widely conjectured that NP does not equal P, and many results
depend on this assumption [Aar17]. Note that this conjecture does not
imply that NP-complete problems require exponential time to solve,
i.e., every algorithm that decides the problem would need Ω(2nc

) time
for some c > 0. It could be the case that, say, O(nlog n) time suffices.

Theorem 2.6.1. Let A ⊆ Σ∗, B ⊆ Γ∗ be languages, and let A ≤p B.

1. If A is NP-hard, then B is also NP-hard.

2. If B is in NP, then A is in NP.

3. If B is in P, then A is in P.

The proof of this theorem is straightforward, and 1. and 2. also
hold for Cook reductions when altering the hardness definition to
Cook reductions. But are there problems that are NP-hard, or even
NP-complete?

The halting problem is easily shown to be NP-hard, but it is not NP-
complete. An example of an NP-complete problem is deciding whether
a proof of some length n exists for a given mathematical statement
[AB09].6 While the generality of this problem makes it plausible that
the problem is hard to solve, and indeed the NP-completeness proof
is easy, the Cook–Levin Theorem establishes NP-completeness of a
combinatorial problem that appears to be much simpler at first glance.

Definition 2.6.2 (Satisfiability Problem (SAT)). Given a formula ϕ in
conjunctive normal form, is there a satisfying assignment for ϕ?

Theorem 2.6.3 (Cook–Levin Theorem, [Coo71; Lev73]). SAT is NP-
complete.

Since checking a given assignment for a SAT instance is possible in
polynomial time, SAT is in NP. A rough sketch of the NP-hardness
proof is as follows. By definition, every problem X in NP has a

5 Note that an undecidable language L becomes decidable for machines with access to
an L-oracle. However, there is a ‘halting problem’ that is undecidable for L-oracle
machines as well [Soa16, Section 3.4.2].

6 This problem was first mentioned in a letter of Kurt Gödel to John von Neumann in
1956 [Lip10].

22 preliminaries

polynomial-time verification algorithm in form of a Turing machine
TX. Given TX, the execution of TX on an X-instance I can be encoded in
a SAT formula that is satisfiable if and only if TX(I) accepts. Therefore
X ≤p SAT.

If the instances of SAT are restricted to be in 3-CNF, the problem is
called 3SAT. A SAT instance can be transformed into an equisatisfiable
3SAT instance in polynomial time by splitting clauses and adding
linking variables. This establishes NP-completeness of 3SAT and is
useful to show NP-hardness of several problems such as the clique
problem.

Definition 2.6.4 (Clique Problem). Given a simple graph G and k ∈N,
is there a complete subgraph of k vertices (a k-clique)?

NP-hardness of the clique problem can be proved by transforming a
formula ϕ in 3-CNF with k clauses into a graph that contains a k-clique
if and only if ϕ is satisfiable [Kar72].

2.7 approximation algorithms

Sometimes, exact computation is too time-demanding, hence one may
turn to approximation algorithms. For c ≥ 1, a c-approximation
algorithm for a minimization problem with optimum value OPT is a
polynomial-time algorithm whose output has value at least OPT and
at most c ·OPT. Sometimes, the value itself is the output, as opposed
to the solution attaining the value. In a maximization problem, the
value must be between c ·OPT and OPT for c ≤ 1. The algorithm
may be randomized and the approximation factor may be achieved in
expectation only. The value c is called the approximation factor or the
approximation ratio.

In a minimization problem, a polynomial-time approximation scheme
(PTAS) is an algorithm that computes a (1 + ϵ)-approximation within
a runtime that is polynomial in the input size for every fixed ϵ > 0.
If the runtime is polynomial in both the input size and ϵ, it is called
a fully polynomial-time approximation scheme (FPTAS). The definition is
analogous for maximization problems with (1− ϵ).

An excellent resource on the topic is Vazirani’s textbook [Vaz01].

2.8 breadth-first and depth-first search

Two of the most basic graph algorithms are breadth-first search (BFS)
and depth-first search (DFS). DFS was first described by Trémaux in
1876 (see [Luc82]). BFS was first described by Zuse in his doctoral
thesis in 1945, which was rejected for formal reasons and published
only much later [Zus72]. Excellent resources on the topic are the
textbooks by Cormen et al. [Cor+01] and Even [Eve11].

2.8 breadth-first and depth-first search 23

Algorithm 2.1: Breadth-first search on a graph G = (V, E) with
start vertex s ∈ V. In addition, distance labels are computed
that can be used to build the level graph of G.
visited[s] = true
predecessor[s] = null
distance[s] = 0
Queue Q = {s}
while Q ̸= ∅ do

u = Q.removeFirst();
foreach (u, v) ∈ E do

if visited[v]=false then
visited[v] = true
distance[v] = distance[u]+1
predecessor[v] = u
Q.addLast(v)

Let G = (V, E) be a (directed or undirected) graph and s ∈ V be a
start vertex. A vertex v ∈ V is reachable from s if there is a path s⇝ v.
Reachability is easily seen to be reflexive and transitive. In undirected
graphs, it is also symmetric.

Using transitivity, BFS and DFS compute the set of all vertices
reachable from s. The main difference is the order in which vertices
are visited. Using either of the two, it is straightforward to compute the
connected components of a simple graph. Moreover, a path from s to
each vertex v in the same connected component can be reconstructed:
Both algorithms store the predecessor for each vertex v on the BFS (or
DFS) path from s to v. It is also easy to modify the algorithms in order
to determine whether the component contains a cycle, which we shall
use extensively in Chapters 9 and 10.

Breadth-first search can be implemented to find the shortest dis-
tances (measured by the number of edges) from s to every vertex v
in the same connected component. We will use this to construct a
level graph in Dinitz’s algorithm (Section 2.13). BFS can also be used
to recognize whether a graph is bipartite.

BFS is implemented with a queue: When a vertex is first discovered
in the search, it is added at the end of the queue. Elements are
retrieved from the start of the queue (the ‘first-in, first-out’ principle).
A pseudocode description of BFS can be found in Algorithm 2.1 on
this page. In DFS, a stack is used: When a vertex is first discovered, it
is put on top of the stack. Elements are retrieved from the top of the
stack (the ‘last-in, first-out’ principle). A pseudocode description of
DFS can be found in Algorithm 2.2 on the next page.

DFS and BFS can both be used to find augmenting paths in flow
networks (see Subsection 2.12.3), which is done by checking whether

24 preliminaries

a ‘sink’ vertex t can be reached from a ‘source’ vertex s in the residual
network.

Algorithm 2.2: Depth-first search on a graph G = (V, E) with
start vertex s ∈ V.
visited[s] = true
predecessor[s] = null
Stack S = {s}
while S ̸= ∅ do

u = S.removeTopElement();
foreach (u, v) ∈ E do

if visited[v] = false then
visited[v] = true
predecessor[v] = u
S.addOnTop(v)

2.9 linear algebra

We will only consider the vector space Rn (over the field R) in our
studies. An element

x =

⎛⎜⎜⎝
x1
...

xn

⎞⎟⎟⎠ ∈ Rn

is called a (column) vector. While the arrangement of the entries xi
in vertical or horizontal order does not change the properties of x, it
is useful to think of vectors as columns by default. A row vector is
written as the transpose xT = (x1, . . . , xn). For vectors, we write x ≤ y
if xi ≤ yi for all i ∈ {1, . . . , m}, and likewise for ≥.

A real matrix A ∈ Rm×n is an array⎛⎜⎜⎝ a11 · · · a1n

a21 · · · a2n

am1 · · · amn

⎞⎟⎟⎠ .

We may also write Aij for aij. The matrix can be viewed as an ordering
of n column vectors

A(j) =

⎛⎜⎜⎝
a1j
...

amj

⎞⎟⎟⎠ , j = 1, . . . , n,

or m row vectors ai = (ai1, . . . , ain), i = 1, . . . , n.

2.10 matroid theory 25

The transpose AT ∈ Rm×n of a matrix is defined as

AT
ij := Aji, (i, j) ∈ {1, . . . , m} × {1, . . . , n}.

The product of two matrices A ∈ Rm×n, B ∈ Rn×k is defined as

(A · B)ij :=
n

∑
l=1

Ail Bl j.

The matrix product can be computed with O(mnk) multiplications
and additions of real numbers. The matrix-vector product Ax is this
product for B = x. The inner product (also called dot product or scalar
product) of two vectors x, y ∈ Rn is yTx = xTy.

A collection of vectors x1, . . . , xk is said to be linearly independent, if
from

k

∑
i=1

λixi = 0

it follows that λi = 0 for all i ∈ {1, . . . , k}. Otherwise, the vectors are
called linearly dependent.

For n ∈N, we denote the (n× n) identity matrix by

In :=

⎛⎜⎜⎝
1

. . .

1

⎞⎟⎟⎠ ,

all non-diagonal entries being zero. A square matrix A ∈ Rn×n is
invertible if there exists A−1 ∈ Rn×n such that AA−1 = In = A−1A.
A square matrix is invertible if and only if its rows (or columns)
are linearly independent. A non-invertible square matrix is called a
singular matrix.

The determinant of a square (n× n)-matrix A is defined as follows.

det(A) := ∑
σ∈Σn

sgn(σ)
n

∏
i=1

ai,σ(i).

A matrix has determinant zero if and only if it is singular.

2.10 matroid theory

Given a (finite) ground set S, a matroid is a set system M ⊆ P(S) with
the following properties:

1. ∅ ∈ M,

2. X ∈ M, Y ⊆ X ⇒ Y ∈ M,

3. X, Y ∈ M, |X| > |Y| ⇒ ∃x ∈ X \Y : Y ∪ {x} ∈ M.

26 preliminaries

A set system satisfying only 1. and 2. is called an independence system.
The restriction that S be finite is not necessary, but simplifies the

presentation in our computational setting. A matroid is called loopless
if for every element x ∈ S we have {x} ∈ M (an x with {x} /∈ S is
called a loop). In this thesis, all examples of matroids are loopless, and
the definition is only needed for technical reasons.

The sets X ∈ M are called independent sets, the sets in P(S) \M
are called dependent. This is a generalization of independence in linear
algebra, as the following proposition shows.

Proposition 2.10.1. Let A be a matrix and S be the set of its columns. Let

I = {X ⊆ S | the elements of X are linearly independent}.
Then I is a matroid.

For a matroidM over S and X ⊆ S, the rank ρM(X) is the maximum
cardinality of an independent subset of X. We may drop the subscript
when the matroid is clear from context.

The rank of a matroid M is ρ(M) := maxX∈M ρM(X). In the
situation of Proposition 2.10.1, the rank of a subset X of columns is
exactly the rank of the matrix defined by these columns.

2.11 linear programming

Many optimization problems can be modeled by linear inequalities
and a linear objective. For an introduction to linear optimization,
we recommend the textbooks by Bertsimas and Tsitsiklis [BT97] and
Schrijver [Sch99].

2.11.1 Linear Programs and the Canonical Form

In a linear program (LP), one optimizes a linear cost function cTx
defined by a cost vector c ∈ Rn over a set of variables x ∈ Rn, which
is constrained by m linear constraints. For i ∈ {1, . . . , m}, the i-th
constraint has one of the three following possible forms

aT
i x ≥ bi, (2.5)

aT
i x ≤ bi, (2.6)

aT
i x = bi, (2.7)

where ai ∈ Rn and bi ∈ R. Note that an equality (2.7) can be expressed
by two inequalities (2.5) and (2.6). An inequality of the type ‘≤’ can
be turned into a ‘≥’-inequality by multiplying it with −1, and vice
versa.

The linear cost function is also called the objective function. By
default, we consider minimization problems. One can turn a mini-
mization problem into a maximization problem by multiplying the
the cost vector c by −1, and vice versa.

2.11 linear programming 27

We say that a linear program is in canonical form if it is of the form

min cTx

s. t. Ax ≥ b,

x ∈ Rn,

for A ∈ Rn×m, c ∈ Rn, b ∈ Rm. By the above considerations, every
linear program can be re-written in canonical form.

A vector x ∈ Rn is called a feasible solution to the linear program if it
satisfies all m constraints. Often, bounds on a variable xi are imposed.
Although this could be modeled by constraints in the matrix A, it is
commonplace and useful to write down these constraints separately.

If x ∈ Rn is a feasible solution and minimizes the objective, it is
called an optimal feasible solution, and the objective value it attains is
called the optimum value. If there is no feasible solution, we call the
linear program infeasible, and feasible otherwise. If the program is
feasible but the minimum does not exist, we call the linear program
unbounded.

2.11.2 Polyhedra and Extreme Points

A linear program in canonical form defines a polyhedron

P = {x ∈ Rn | Ax ≥ b},

it is the intersection⋂︂
i∈{1,...,m}

{x ∈ Rn | aT
i x ≥ bi}

of ‘half-spaces’. If the polyhedron is bounded, it is called a polytope. If
the linear program is unbounded with respect to the objective, then
the polyhedron is unbounded. The reverse does not hold in general.

For points x1, . . . , xk and coefficients λ1, . . . , λk ∈ [0, 1] that satisfy
∑k

i=1 λi = 1, the sum

k

∑
i=1

λixi

is called a convex combination. A set X ⊆ Rn is convex if every convex
combination of two points in X is also in X. The convex hull of a set of
points is the set of all convex combinations of these points.

It is easy to show that every polyhedron is convex. A point x ∈ P
that cannot be expressed as a convex combination of two points
x1, x2 ̸= x in P is called an extreme point. If for a point x ∈ P there is a
hyperplane

H = {y ∈ R | cTy = b′}

28 preliminaries

with x ∈ H, but y /∈ H for every y ∈ P \ {x}, then x is called a vertex
of P.

A linear inequality is tight (or active) if it holds with equality. For
the following discussion, we extend the definition of polyhedra to
allow for equalities. A point x ∈ Rn is called a basic solution if all
equality constraints are active at x, and there are at least n linearly
independent active constraints for x. If in addition, x ∈ P, it is called
a basic feasible solution. If there are more than n constraints active at x,
it is called degenerate.

Theorem 2.11.1. For a polyhedron P ⊆ Rn with x ∈ P, the following are
equivalent:

1. x is an extreme point,

2. x is a vertex,

3. x is a basic feasible solution.

2.11.3 Duality

Definition 2.11.2 (Dual linear program). Given a linear program

max cTx

s. t. Ax ≤ b,

x ≥ 0,

called the primal program, the dual linear program is given by

min yTb

s. t. ATy ≥ c,

y ≥ 0.

The following lemma justifies the term ‘duality’.

Lemma 2.11.3. The dual program of the dual program is the primal pro-
gram.

Proof. By multiplying the objective function of the minimization prob-
lem with −1, one obtains a maximization problem, and by multiplying
the constraints with −1, the ‘≥’-inqualities become ‘≤’-inequalities.
Since (AT)T = A and yTb = bTy the claim follows.

By noting that ATy = yT A, it is straightforward to prove that the
optimal objective value of the dual problem is an upper bound on the
optimal objective value of the primal problem.

Theorem 2.11.4 (Weak Duality Theorem). If x ∈ Rn is a primal feasible
solution, and y ∈ Rm is a dual feasible solution, then cTx ≤ yTb.

In particular, if the primal program is unbounded, then the dual program
is infeasible.

2.11 linear programming 29

A central theorem of linear programming theory is that the optimum
values are in fact equal.

Theorem 2.11.5 (Strong Duality Theorem [Neu63; GKT51]). If the
primal problem has an optimal feasible solution, so does the dual problem,
and their optimal objectives are equal.

A proof of this theorem is possible with a variant of Farkas’s lemma.

Theorem 2.11.6 (Farkas’s Lemma [Far02]). For A ∈ Rm×n and b ∈ Rm,
exactly one of the following two systems is feasible:

{x ∈ Rn | Ax = b, x ≥ 0},
{y ∈ Rm | ATy ≥ 0, yTb < 0}.

Corollary 2.11.7. For A ∈ Rm×n and b ∈ Rm, exactly one of the following
two systems is feasible:

{x ∈ Rn | Ax ≤ b, x ≥ 0},
{y ∈ Rm | ATy ≥ 0, yTb < 0, y ≥ 0}.

2.11.4 Total Unimodularity

Let us turn to an important special case of constraint matrices. A
submatrix of a matrix A is created by deleting a collection of rows and
columns.

Definition 2.11.8. (Total unimodularity) A matrix A is totally unimod-
ular (TU) if every square non-singular submatrix has determinant 1 or
−1.

In particular, each entry in a TU matrix is +1,−1, or 0.

Lemma 2.11.9. A matrix A is TU if and only if AT is TU.

Lemma 2.11.10 ([HK56]). The incidence matrix of a simple graph G is TU
if and only if G is bipartite.

Theorem 2.11.11 ([HK56]). Let A ∈ {0, 1,−1}m×n be a TU matrix. For
every integral vector b ∈ Zm, the vertices of

{x ∈ Rn | Ax ≤ b, x ≥ 0}

are integral.

We say that a polytope is integral if all its vertices are integral.
Theorem 2.11.11 is useful because of the following fact.

Lemma 2.11.12. For every nonempty polytope, there is an optimal feasible
solution that is an extreme point.

30 preliminaries

2.11.5 Algorithms to Solve Linear Programs

The simplex method is a classic and often-used algorithm to solve
linear programs. While its worst-case running time is exponential,
it often performs well in practice. The simplex method was first de-
scribed by Dantzig [Dan49; Dan51; Dan63] following von Neumann’s
groundbreaking work in economics [Neu38].

A rough overview of the algorithm (for polytopes) is as follows.
Suppose the linear program is feasible and we are given a basic feasible
solution. The algorithm moves along the edges of the polytope from
vertex to vertex in a direction of reduced cost, i.e., moving along such
an edge improves the objective. Once a vertex is reached where no
direction of reduced cost exists, we have found an optimal (basic)
feasible solution. (This proves Lemma 2.11.12.)

As there may be several directions of reduced cost, one has to choose
one using a pivoting rule. An iteration takes O(m3 + mn) time with
Dantzig’s rule. However, instances exist where the number of itera-
tions is exponential [KM72]. It is an open question whether variations
of the simplex method exist whose runtime is sub-exponential.

Another paradigm for solving LPs are interior point methods, which
move through the interior of the polyhedron. The first (weakly) poly-
nomial algorithm for solving LPs is the ellipsoid method by Khachiyan
[Kha79], who built upon work by Shor [Sho77]. Karmarkar [Kar84]
later gave another weakly polynomial algorithm whose practical per-
formance was competitive. The question whether there is a strongly
polynomial algorithm for solving LPs is still open.

2.11.6 Integer Linear Programs

If all variables are required to take integer values, we speak of in-
teger linear programs (ILPs). If this required only for some variables,
we speak of mixed integer linear programs (MILPs). We shall assume
minimization problems in this subsection. The following theorem il-
lustrates how ILPs can model combinatorial problems, and also shows
that solving ILPs is presumably hard.

Theorem 2.11.13 ([Kar72]). Solving ILPs is NP-complete, even for binary
variables.

Proof sketch. A given solution can be verified in polynomial time. To
show NP-hardness, we use a reduction from 3SAT. For every variable
xi of the 3SAT instance ϕ(x1, . . . , xn), we use a binary variable xi in
the integer linear program. As a shorthand, let

lij =

⎧⎨⎩xk, if Cij = xk,

(1− xk), if Cij = ¬xk.

2.11 linear programming 31

For every clause Ci of the instance, create a constraint

li1 + li2 + li3 ≥ 1.

It is easy to see that ϕ is satisfiable if and only if the ILP has a feasible
solution.

Many combinatorial problems have a straightforward interpretation
as ILPs. If the integrality constraints are dropped, the resulting LP is
called the relaxation of the (M)ILP. A solution to the relaxation is called
a fractional solution. Feasible fractional solutions provide us with
lower bounds to the objective and can help in designing approximation
algorithms. For example, a fractional assignment to a variable x can be
rounded to the nearest integer. There are also randomized algorithms
that interpret such an assignment as a probability if x is a binary
variable (possibly after appropriate scaling).

Let us consider two (mixed) integer linear programs on the same
variable space that have the same feasible integral solutions with
polytopes P1, P2 corresponding to their relaxations. Let us further
assume for simplicity that the zero vector is a feasible solution for
both.

From the standpoint of optimization, if P1 ⊊ P2, then P1 is favorable
because there are ‘less feasible fractional solutions’. More precisely, if
x ∈ P2 \ P1, without loss of generality a vertex, then there are objective
functions such as ∑n

i=1−xi for which x ∈ P2 is optimal, and no feasible
solution in P1 has the same objective value. Thus, the objective of an
optimum feasible solution to P1 will be closer to the objective value
of an optimal integral feasible solution than the objective value of x
is. Hence, by solving the linear program of P1 we obtain a better
bound. Thus we say that the linear program of P1 is a strictly stronger
relaxation for the MILP than the linear program of P2.

Sometimes, two MILPs have different variable spaces. It may still be
possible to compare the strength of their relaxations by an appropriate
transformation. For example, one ILP may have one variable xuv for
each edge uv in an undirected graph, while another has two variables
y(u,v), y(v,u) for the oriented edges (u, v) and (v, u). By using the
projection xuv = y(u,v) + y(v,u), one can compare the polyhedra.

The integrality gap is a useful concept for measuring how tight a
relaxation is.

Definition 2.11.14. Consider a minimization (M)ILP for instance i that
has at least one feasible integer solution. Let OPT(i) and OPTf (i)
denote the optimum feasible integral and fractional solutions, respec-
tively. The ratio

OPT(i)
OPTf (i)

32 preliminaries

is called the integrality gap or integrality ratio of the instance.7 The
supremum

sup
i instance

OPT(i)
OPTf (i)

over all instances for the problem is called the integrality gap of the
(M)ILP.

An integrality gap of at most c often translates into an approxima-
tion algorithm with approximation factor c. In reverse, an integrality
gap of at least c means that, based on the relaxation alone, we cannot
hope for an approximation factor less than c. Of course, using other
ideas, one may be able to obtain a factor of less than c.

2.11.7 Branch-and-Bound and Branch-and-Cut

In order to solve (M)ILPs, one can use the branch-and-bound technique.
In the following, let us assume the case of ILPs for a simpler presenta-
tion.

Branching refers to the tree that is constructed in the search. The
root node corresponds to the relaxation of the given ILP, and is the
current node initially. A branching rule creates children for a current
node, each with additional constraints such that the optimum solution
of the current node must be in one of its children. Ideally, the solution
spaces of the children are disjoint.

One branching rule is variable fixing that creates children for each
of the possible integer values of a chosen variable. For example, if a
variable xi is binary, we can create two branches, one where xi = 0 and
one where xi = 1 is mandated. Another rule is constraint insertion. For
example, for an integer variable xi we may insert a constraint xi ≤ k
for one child and xi ≥ k + 1 for the other.

A current node can be ‘solved’ by branching on it directly or solving
the relaxation of its ILP first. If the relaxation is infeasible, we can
stop the search in the current node. If the optimum feasible fractional
solution is integral, we can also stop the search in this node. It it is
not integral, we obtain a lower bound c for the objective value of the
ILP in this node. If we somehow know for the global integral objective
OPT that OPT < c, then we can stop the search in this branch of the
tree. Otherwise, we will have to branch.

In order to know that OPT < c, we can maintain the value of the
best known feasible integral solution, the incumbent, because each
integral feasible solution provides us with an upper bound on OPT.
In order to find such solutions, heuristics can be used, even during the
branch-and-bound process. For example, we could apply rounding to

7 If we have OPTf (i) = 0, we use the convention that OPT(i)
OPTf (i)

= 1 if OPT(i) = 0, and
OPT(i)
OPTf (i)

= ∞ otherwise.

2.12 the maximum flow problem 33

a feasible fractional solution. If the rounded solution is also feasible,
this possibly improves the incumbent.

In order to select the next current node among the unsolved nodes,
we need a search strategy. There are several search strategies, most
commonly depth-first, breadth-first, and best-first. The first two are
self-explanatory from Section 2.8. Using the depth-first strategy yields
feasible integral solutions faster than breadth-first and is therefore
particularly useful when no heuristic for generating good feasible
integral solutions is available. The best-first strategy selects the node
with the best lower bound, as it is ‘the most promising’.

The cutting-plane method can be applied if the number of constraints
is large, maybe even exponential in the input size. Instead of using
all constraints at the beginning, one may start with a smaller subset.
Once this restricted program has been solved, one has to determine
whether some constraint that has not been used is violated. If no such
constraint exists, we are done. Otherwise, we add at least one of these
violated constraints and continue solving. Typically, one does not have
to add the full set of constraints.

The process of finding violated constraints is called separation be-
cause a violated constraint is a hyperplane that separates the current
feasible solution from the convex hull of the feasible integral solutions.

The cutting-plane method can be integrated into the branch-and-
bound method. The result is called the branch-and-cut method.

2.12 the maximum flow problem

2.12.1 Flows as Linear Programs

Given a directed graph G = (V, E) without loops and with two
distinguished vertices s ̸= t, called the source and sink, and a capacity
function c : E → R+

0 , we call the tuple (V, E, c, s, t) a flow network.
Excellent resources are the textbooks [Cor+01; Eve11].

Some authors allow infinite capacities on the arcs as well, which we
do not. We call the vertices of the network nodes and the edges arcs
to avoid confusion, unless we want to emphasize that they directly
correspond to the vertices and edges of a given graph. Without loss of
generality, we can assume no arc enters the source and no arc leaves
the sink.8 This will make the presentation less complicated.

We wish to send flow from s to t, i.e., find an assignment f : E→ R+
0 .

The source s has an infinite supply of flow and t can absorb an infinite
amount of it. An arc can only carry as much flow as its capacity
allows, i.e., f (u, v) ≤ c(u, v) must hold for every (u, v) ∈ E. If need be,
a tuple (u, v) /∈ E can be modeled as a zero-capacity arc. For runtime
analyses we discard such arcs. Sometimes, we will write f (v, S) for

8 To see this, introduce artificial nodes s′, t′ with arcs (s′, s) and (t, t′) of sufficient
capacity.

34 preliminaries

s 1 t

2

2/2

1/2

1/2

2/2
1/1

(a)

s 1 t

2

2

1

1
1

1

2
1

(b)

s 1 t

2

2/2

2/2

2/2

2/2
0/1

(c)

Figure 2.1: (a) A flow of value three. The number left of the slash is the
amount of flow the arc carries, the number to its right is the arc’s
capacity. (b) The flow’s residual network. There is an augmenting
path s → 2 → 1 → t (blue) that allows augmenting the flow
by one. (c) The augmented flow. It is maximum as there is no
augmenting path in its residual network (not shown).

S ⊆ V as a shorthand for the total amount of flow going from node v
to the nodes in S.

The amount of flow that enters a node v /∈ {s, t}must be equal to the
amount that leaves it. The latter property is called flow conservation9.
A flow is called integral if f (u, v) ∈ N0 for every arc (u, v) ∈ E. An
example of a flow is given in Figure 2.1a. Formally, we can state the
maximum flow problem as

max v (2.8)

s. t. v− ∑
(v,t)∈E

f (v, t) = 0, (2.9)

∑
(s,v)∈E

f (s, v)− v = 0, (2.10)

∑
(u,v)∈E

f (u, v)

− ∑
(v,u)∈E

f (v, u) = 0, v ∈ V \ {s, t}, (2.11)

f (u, v) ≤ c(u, v), (u, v) ∈ E, (2.12)

f (u, v) ≥ 0, (u, v) ∈ E, (2.13)

v ≥ 0. (2.14)

The amount v that emanates from the source for a feasible assignment
f is called the value of the flow and denoted by | f |. Constraint (2.9) in
the formulation is redundant, but adding it makes it easier to establish
a connection to the minimum cut problem in the following subsection.
If a capacity constraint (2.12) is tight, we call the corresponding arc
saturated.

9 One could demand flow conservation in s and t as well if an arc (t, s) of sufficiently
large capacity is introduced.

2.12 the maximum flow problem 35

2.12.2 The Minimum Cut Problem

An s-t-cut in the network is defined as a partition V = S ∪̇ T with
s ∈ S, t ∈ T. We write (S, T) for short. Given such a cut (S, T), its
capacity is defined as

c(S, T) := ∑
u∈S,v∈T

c(u, v).

The minimum cut problem is to find a cut in the network with
minimum capacity crossing the cut. The maximum flow and minimum
cut problems are dual to one another. To see this, we look at the dual
program of (2.8)-(2.14).

min ∑
(u,v)∈E

x(u,v)c(u, v) (2.15)

s. t. yu − yv + x(u,v) ≥ 0, (u, v) ∈ E, (2.16)

yt − ys = 1, (2.17)

x(u,v) ≥ 0, (u, v) ∈ E, (2.18)

yv ∈ R, v ∈ V. (2.19)

One may wonder how the variables should be interpreted to see that
this is indeed a linear program for the minimum cut. As the variables
y do not appear in the objective function, and in each constraint, a
difference of two such variables appears, one can fix yv = 0 for exactly
one v ∈ V without affecting feasibility or the objective. We do this
for ys = 0, and by Constraint (2.17), this determines yt = 1. It is
now possible to interpret a variable yv, when restricted to the range
{0, 1}, as an indicator variable for v being on the t-side of the cut. The
following lemma is immediate.

Lemma 2.12.1. For every cut (S, T), the solution

yv =

⎧⎨⎩1, if v ∈ T,

0, otherwise.

x(u,v) =

⎧⎨⎩1, if u ∈ S and v ∈ T,

0, otherwise.

is feasible for (2.16)-(2.18), and the objective value (2.15) it attains is the
capacity c(S, T).

This lemma shows that the minimum (2.15) is a lower bound to the
capacity of any s-t-cut. Furthermore, solutions to the minimum cut
LP can be converted into a cut with the same value:

Lemma 2.12.2. Given a feasible solution to (2.16)-(2.18) with value v, there
is a cut (S, T) with capacity c(S, T) ≤ v.

36 preliminaries

In order to prove this, one can use the fact that the minimum cut
LP has a TU constraint matrix. Theorem 2.11.11 and Lemma 2.11.12

can then be applied. We can now state the central theorem of network
flow theory, the Max-Flow Min-Cut Theorem.

Theorem 2.12.3 (MFMC Theorem [FF56; EFS56]). Let f be a maximum
flow and (S, T) be a minimum cut. Then | f | = c(S, T).

Proof. The LPs (2.8)-(2.14) and (2.15)-(2.18) are always feasible and
dual to one another. By the Strong Duality Theorem (Theorem 2.11.5)
the optimum values of the LPs are equal. By combining Lemma 2.12.1
and Lemma 2.12.2, the optimum value of the LP (2.16)-(2.18) is the
capacity of a minimum cut.

Without loss of generality, we can work with net flow: Given a
feasible flow f , for each arc (u, v) ∈ E we define f̃ (u, v) := f (u, v)−
f (v, u). This implies the skew symmetry property

f̃ (u, v) = − f̃ (v, u), (u, v) ∈ E,

and the capacity constraints and flow conservation are still satisfied.
The only difference is that the flow value on an arc may be negative.

Lemma 2.12.4. For every flow f and any cut (S, T) we have

f̃ (S, T) = | f |.

Proof. We use an inductive argument. The claim holds for the cut
({s}, V \ {s}) by definition of | f |. Let the claim hold for a cut (S, T),
and let x ∈ T \ {t}. If we move x from T to S to obtain (S′, T′), the
value f̃ (S, T) decreases by f̃ (S, x) and increases by f̃ (x, T).

By skew symmetry and flow conservation, the net increase is thus

f̃ (x, T)− f̃ (S, x) = f̃ (x, T) + f̃ (x, S) = 0.

Hence, f̃ (S′, T′) = | f |. We can obtain any cut in the network by
moving the appropriate nodes from T to S one by one.

It is possible to determine a minimum cut from any given maximum
flow.

Theorem 2.12.5. Given a maximum flow, a minimum cut in the same net-
work can be determined in linear time.

This theorem will be proved in the next subsection.

2.12.3 Maximum Flows by Augmenting Paths

Theorem 2.12.5 is useful because the maximum flow problem is often
not solved with LP solvers that can construct an optimal dual solution
simultaneously, but by ‘combinatorial’ algorithms. The first such

2.12 the maximum flow problem 37

method was given by Ford and Fulkerson [FF57]. Imagine we start
with the zero flow, i.e., f (u, v) = 0 for every (u, v) ∈ E. Determine
a path of non-saturated arcs (e1, e2, . . . , ek) from s to t, if one exists.
Such a path can be found with a depth-first search, where an arc may
be traversed unless saturated. Then, let ∆ = mink

i=1 c(ei)− f (ei). It
is now possible to increase the flow on each arc on the path by ∆.
Flow conservation and the capacity constraints are maintained, and
the value of the flow increases by ∆. Repeating the step until t cannot
be reached from s yields an increasingly greater flow value. However,
this need not lead to a maximum flow even if the process terminates.
Consider Figure 2.1a on page 34: There is no such path from s to t, yet
the flow is not a maximum flow. We have to be able to revert previous
choices by sending flow in the opposite direction, which causes flow
to be ‘cancelled out’.

In order to formalize this idea, it is convenient to operate on the
residual network. An example is given in Figure 2.1b on page 34.

Definition 2.12.6 (Residual Network). Given a flow network N =

(V, E, c, s, t) and a flow f in N, the residual network is defined as N f :=
(V, Er, c f , s, t), where (u, v) ∈ Er if f (v, u) > 0 or c(u, v)− f (u, v) > 0.
We set c f (u, v) := f (v, u) in the former case and c f (u, v) := c(u, v)−
f (u, v) in the latter.

The residual network is quite intuitive to understand. If we find a
path p = (e1, . . . , ek) in it from s to t, we can augment the flow f (as a
function on V ×V) by the minimum value ∆ = mink

i=1 c f (ei) on this
path. Such a path is thus called an augmenting path. The following
lemma generalizes this idea.

Lemma 2.12.7. Let N = (V, E, c, s, t) be a flow network and f be a flow in
N (as a function on V ×V). Let fr be a flow in N f . Then

f ′(u, v) = f (u, v) + f ′(u, v)− f (v, u)

is a flow in N with value | f ′| = | f |+ | fr|.

The proof is quite technical and can be found in [Cor+01]. The
basic Ford–Fulkerson algorithm is now easily formulated: Start with
a feasible flow f , for example the zero flow. Construct the residual
network N f . Find an augmenting path in N f , and augment f with it.
Construct the residual network for the augmented flow, and repeat.

The partial correctness of the Ford–Fulkerson method hinges on the
following fact, which we shall now prove rigorously.

Lemma 2.12.8. Let f be a feasible flow in a flow network N. Then f is
maximum if and only if there is no f -augmenting path in N f .

Proof. ‘⇒’: By contraposition. If there is an f -augmenting path, then
f is clearly not maximum, for otherwise it could be augmented by
Lemma 2.12.7.

38 preliminaries

‘⇐’: If there is no augmenting path, then t cannot be reached from
s in N f . Let S ⊆ V be the set of nodes reachable from s in N f , and let
T = V \ S. Clearly, (S, T) is a cut. If for u ∈ S and v ∈ T there is an
arc (u, v) ∈ E, then we have f (u, v) = c(u, v), for otherwise v would
be in S. If there is an arc (v, u) ∈ E, then f (v, u) = 0, for otherwise
v would also be in S. If neither (u, v) nor (v, u) are in E, we have
f (u, v) = 0 = f (v, u). Thus,

f̃ (S, T) = ∑
u∈S

f (u, v)− ∑
v∈T

f (v, u) = ∑
u∈S

c(u, v) = c(S, T).

By Lemma 2.12.4 we can conclude c(S, T) = | f |. Assume for the
sake of contradiction that f is not a maximum flow. Then there is a
maximum flow f ′ with

| f ′| > | f | = c(S, T). (2.20)

By the MFMC Theorem, | f ′| equals the capacity of the minimum cut,
which contradicts (2.20).

We now return to the question of finding a minimum cut.

Proof of Theorem 2.12.5. If f is maximum, then there is no augmenting
path in N f by Lemma 2.12.8. We can construct the cut (S, T) used
in its proof of capacity | f | (i.e., a minimum cut) in linear time with
breadth-first search.

The following lemma will be useful in the runtime analysis of
Dinitz’s algorithm in Section 2.15.

Lemma 2.12.9. Given a flow network N with maximum flow value M and
some flow f , the maximum flow value Mr in the residual network N f is
equal to M− | f |.

Proof. For any cut (S, T), we have by Lemma 2.12.4

| f | = f̃ (S, T) = ∑
u∈S,v∈T

f (u, v)−∑
u∈S,v∈T

f (v, u)

and

c f (S, T) = ∑
u∈S,v∈T

(c(u, v)− f (u, v)) + ∑
u∈S,v∈T

f (v, u).

Combining the two equations yields

c f (S, T) = ∑
u∈S,v∈T

c(u, v)− | f |. (2.21)

If we minimize c f (S, T), we also minimize the right-hand side of (2.21).
As | f | is constant, this implies that a minimum cut in N f is also a
minimum cut in N. Let (S, T) now be a minimum cut in N f .

2.12 the maximum flow problem 39

By applying the MFMC Theorem twice on (2.21), we have

Mr = c f (S, T) = M− | f |

as desired.

We will now prove total correctness of the Ford–Fulkerson algorithm
in case the capacities are integers.

Theorem 2.12.10. If all capacities are integers, the Ford–Fulkerson al-
gorithm terminates with an integral maximum flow of value M in time
O(M|E|).
Proof. Clearly, if the capacities are integers, then the increment value
∆ in the first iteration is an integer, and the capacities in the residual
network of the ∆-augmented flow are integers as well. Inductively,
this means that if the algorithm terminates, it finds an integral flow.

As the maximum flow value is an integer, and every augmentation
increases the value of the current flow by at least one, the algorithm
must terminate after at most M augmentations, each of which takes
O(|E|) time.

Ford and Fulkerson show that the algorithm need not terminate
for irrational capacities [FF10]. If the capacities are rational, we can
multiply with the least common multiple of their denominators to
obtain integral capacities. After this integral problem has been solved,
we can divide again to obtain a maximum flow in the original problem:
As multiplication and division by positive numbers correspond to
scaling the flow LP, this preserves feasibility and optimality.

2.12.4 Flow Algorithms and Their Runtimes

If a flow is decomposed into several flows, of which each only carries
flow along a single path, the sum of these pathlengths can be as large
as Θ(|V||E|) [GR98; GT14]. This is called the flow decomposition barrier
because it implies that algorithms which augment the flow one path
at a time, and paths arc-by-arc, have a runtime of Ω(|V||E|). This
does not mean, however, that Ω(|V||E|) is a lower bound for the
maximum flow problem: It does, for example, not apply to solving
the linear program for flows, algorithms based on the push-relabel
paradigm (e.g., [GT88b]) or algorithms that use special data structures
to manipulate entire paths (such as link-cut trees [ST81]).

The first algorithm to break this bound for dense graphs was given
by Cheriyan et al. [CHM96], it runs in time O(|V|3/ log |V|). It par-
titions the adjacency matrix of the network into submatrices of size
1× ⌊log(|V|)⌋, which can then be processed in constant time by ta-
ble look-ups of log(|V|)-sized integers. After decades of research
and many intermediate results, Orlin [Orl13] was able to achieve the
runtime O(|V||E|) in general.

40 preliminaries

If all capacities are equal to one (‘unit capacities’), Dinitz’s algorithm
runs in

O
(︃
|E|min

(︃√︂
|E|, |V|2/3

)︃)︃
time [ET75; Kar73], as we will see in the following sections. These
bounds were recently beaten after decades of research in two break-
through papers by Mảdry [Mảd13] and Lee and Sidford [LS14].

Mảdry’s algorithm uses a primal-dual technique for a matching
problem and electrical flow computations. The maximum flow prob-
lem is reduced to the matching problem. The algorithm runs in time
Õ(|E|10/7). The Lee–Sidford algorithm, which is an interior-point
method, has runtime Õ(|E|

√︁
|V|) on unit capacity networks.

An application of these algorithms (Theorem 4.1.4) renders some
of our results in Chapters 6 and 11 (published in [Blu16]) obsolete,
although we think they still have some merits.

If the capacities are integers bounded by U, the celebrated binary
blocking flow algorithm of Goldberg and Rao [GR98], which general-
izes ideas of Dinitz’s algorithm, runs in time

O
(︃
|E|min

(︃√︂
|E|, |V|2/3

)︃
log
(︃ |V|2
|E|

)︃
log U

)︃
.

It uses link-cut trees and additional steps such as determining and con-
tracting strongly connected components in order to obtain an acyclic
network for the blocking flow algorithm. After the flow computation,
the components are de-contracted and the flow is routed inside them.

Mảdry [Mảd16] was able to further develop the electrical-flow tech-
niques to obtain a runtime of Õ(|E|10/7U1/7) in the integer capacity set-
ting, where the Lee–Sidford algorithm has runtime Õ(|E|

√︁
|V| log2 U).

2.13 dinitz’s algorithm

Dinitz [Din70] and independently, Edmonds and Karp [EK72], intro-
duced the idea of finding shortest augmenting paths, which leads to
strongly polynomial algorithms for the maximum flow problem.

Dinitz’s algorithm can be formulated in terms of blocking flows, a
term coined by Karzanov [Kar74], which allows for simplifications
and improvements. For a historical account of these developments, see
[Din06]. The following variant of the algorithm has been attributed to
Even and Itai by Dinitz [Din06], and it can be found in Even’s textbook
[Eve11].

A blocking flow is a flow where every path from s to t has at least
one saturated arc. Note that a maximum flow is always a blocking
flow, but the converse does not hold in general. An example is the
blocking flow in Figure 2.1a on page 34, a maximum flow of greater
value is shown in Figure 2.1c.

2.13 dinitz’s algorithm 41

Dinitz’s algorithm works in phases: It computes a blocking flow in
the residual network (starting from the zero flow) in each phase and
then updates the residual network for the next phase.

Lemma 2.13.1. The length of the shortest augmenting path increases10 with
every blocking flow phase.

The number of phases until termination is thus bounded by |V|.
The total runtime is O(|V|B(|V|, |E|)) where B(|V|, |E|) is the runtime
for computing a blocking flow.

Finding a blocking flow is possible in the following way: First, one
computes a level graph of the residual network in a breadth-first-
search from s in O(|E|). The i-th level consists of the nodes at distance
i from s. Arcs that do not lead to the next level are discarded, while
arcs between nodes of the same level are present. In particular, the
level network is acyclic. Then, one computes a blocking flow on this
level network with depth-first-searches: With each DFS, we try to
establish a path from s to t, along which we push flow such that the
path becomes blocked, i.e., no more flow can be sent through it. This
is done by pushing the minimum of the residual capacities on the path.
A move from a node to another in DFS is called an advance move.

If at some point, a node v does not have an outgoing arc, delete it
and the arc (u, v) through which we entered it. Continue the DFS in u.
This is called retreat. Any previous advance that we retreat back to is
called an unsuccessful advance in hindsight. If t is found, push as much
flow through the path as possible, i.e., the minimum capacity of its
arcs. (The advances made on these arcs are called successful advances
in retrospect.) All arcs on the path that become saturated (at least one)
can be ignored in following searches.

By considering the arcs of a node in the order they appear in its
adjacency list, this amounts to traversing the list not more than once.
Start the next DFS. If t cannot be found in a search, i.e., all paths are
blocked and we backtrack to s, we have established a blocking flow.

Lemma 2.13.2. A blocking flow can be found in time O(|V||E|).

Proof sketch. There can be |E| unsuccessful advances and retreats in
the searches at most: if we cannot reach t from a node v, then the arc
through which we entered v will be ignored after the retreat. Since
at least one arc is saturated with every augmenting path found, there
can be at most |E| augmentations. Each augmentation along a path
costs O(|V|), and we can include the cost of successful advances in
this estimate.

Lemmata 2.13.1 and 2.13.2 imply the following theorem.

Theorem 2.13.3 ([Din70]). Dinitz’s algorithm runs in time O(|V|2|E|).

10 The final phase is considered to increase the length to ∞.

42 preliminaries

Sleator and Tarjan [ST81] introduced the link-cut trees data structure,
which can be used to solve the blocking flow problem with a runtime
of O(|E| log |V|). A variant of Goldberg and Tarjan [GT90] improves
this to O(|E| log(|V|2/|E|)) time. If the capacities in the network are
all equal to one, Dinitz’s algorithm can be shown to be even faster.
This analysis, which will be used in Chapters 3 to 5, is the subject of
the next section.

2.14 almost unit capacity networks

In some applications, all capacities in a flow network are equal to one
except for the arcs emanating from the source and the arcs leading to
the sink. We now choose to keep s, t /∈ V.

Definition 2.14.1 (AUC, AUC-2). Let G = (V, E) be a directed graph
and let N = (V ∪̇ {s, t}, E∪ Es ∪ Et, c) be a flow network (‘G-network’)
with

Es ⊆ {s} ×V, Et ⊆ V × {t}, c : E ∪ Es ∪ Et −→N.

N is called an almost unit capacity (AUC) G-network if c(u, v) ≤ 1
for all (u, v) ∈ E. If merely c(u, v) ≤ 2 holds, N is called an AUC-2
G-network.

The definition of AUC-2 networks will be needed in the following
section because residual networks of AUC networks can have capaci-
ties of two per arc11. We now prepare the reduction of large source
and sink arc capacities. Intuitively speaking, one should send as much
flow as possible on the length-2 paths s→ v→ t. In the following, if
an arc is not present, we assume its capacity is zero.

Lemma 2.14.2. Let N be a flow network. There exists a maximum flow f
in N with

f (s, v), f (v, t) ≥ Fv := min(c(s, v), c(v, t))

for all v ∈ V. Let N′ denote a copy of N with capacities c′(s, v), c′(v, t)
reduced by Fv for v ∈ V. A maximum flow in N′ plus the flow Fv on the
paths s→ v→ t is one such flow f .

Proof. For every v ∈ V, define Fv := min(c(s, v), c(v, t)). Consider the
feasible flow f− in N where f−(s, v) = Fv = f−(v, t) for all v ∈ V
and f−(u, v) = 0 for (u, v) ∈ E. We will now reduce the capacities by
these flow values to obtain the flow network N′: Define c′ := c− f−.

The crucial idea is that any cut in N has exactly the capacity of the
corresponding cut in N′ plus the values Fv for v ∈ V.

11 This does not happen in the bipartite network (Section 3.6) and the re-orientation
network (Section 4.1), where for an arc (u, v) of the original network there never is a
reverse arc (v, u). However, for Goldberg’s network (Subsection 3.3.3), we need this
definition.

2.14 almost unit capacity networks 43

Let M denote the value of the maximum flow in N. This is also the
capacity of some minimum cut (S, T) in N. In N′, the cut (S, T) has
capacity

C′(S,T) = ∑
v∈T

c′(s, v) + ∑
v∈S

c′(v, t) + ∑
u∈S\{s}
v∈T\{t}

c′(u, v)

= M− ∑
v∈V

Fv.

If (S, T) is also a minimum cut in N′, its capacity must equal the
maximum flow value of N′. We can then add the flow f− to a max-
imum flow of N′ to obtain a feasible flow for N with a value of
(M−∑v∈V Fv) + ∑v∈V Fv = M. It is thus a maximum flow in N.

It remains to show that (S, T) is indeed a minimum cut of N′.
Assume otherwise, i.e., there exists a cut (S∗, T∗) with

C′(S∗,T∗) < C′(S,T) = C(S,T) − ∑
v∈V

Fv. (2.22)

Thus,

C(S∗,T∗) = C′(S∗,T∗) + ∑
v∈V

Fv
(2.22)
< C(S,T),

so (S, T) is not a minimum cut in N, which contradicts the assumption.

Proposition 2.14.3. Let N be an AUC-2 G-network for a directed graph
G = (V, E). A maximum flow in N can be found by running linear-
time pre- and postprocessing algorithms and invoking any maximum flow
algorithm on the obtained AUC-2 G-network Ñ with bounded total source
and sink arc capacities Cs,t(Ñ) ∈ O(|E|).
Proof. We subtract the value Fv as defined in Lemma 2.14.2 from
c(s, v), c(v, t) for every v ∈ V to obtain c′, other capacities are adopted
without change.

Since for every v, at least one of these two arcs now has zero capacity,
every flow-carrying path s ⇝ v ⇝ t must pass through vertices in
V \ {v}. Thus, the flow s→ v is bounded by 2outdeg(v) and the flow
v→ t is bounded by 2indeg(v).

For any vertex v with c′(s, v) > 2outdeg(v) we can now safely set
c̃(s, v) = 2outdeg(v) for all v ∈ V. Likewise, for v with c′(v, t) >

2indeg(v) we can set c̃(v, t) = 2indeg(v) for all v ∈ V. Other capaci-
ties are adopted. Call this AUC-2 G-network Ñ. Its total source and
sink arc capacities are

Cs,t(Ñ) = ∑
v∈V

(c̃(s, v) + c̃(v, t))

≤ ∑
v∈V

(2outdeg(v) + 2indeg(v)) = 2|E|.

The capacity reduction takes O(|V|+ |E|) time.

44 preliminaries

2.15 dinitz’s algorithm on auc networks

We now investigate how Dinitz’s algorithm [Din70] performs on
AUC-2 G-networks. Recall that Dinitz’s algorithm works in phases. In
each phase, a blocking flow is found. First, we give a generalization
of a proposition by Kowalik [Kow06, Proposition 3] (see also [ET75;
Kar73; Eve11]).

Proposition 2.15.1. Each phase of Dinitz’s algorithm runs in O(|E|) on
an AUC-2 G-network N if the total source and sink arc capacities Cs,t(N)

are at most c|E| for some constant c > 0.

Proof. There are at most 2|V|+ |E| arcs in the network, so the number
D of deletions is at most D ≤ 2|V| + |E|. The total number B of
backtrack steps is at most the number of advance steps A, which is
also an upper bound on the number of pushes P performed on the
arcs. The number of advance steps on an arc is bounded by its capacity.
Thus, we have

A ≤ ∑
v∈V

c(s, v) + ∑
(u,v)∈E

c(u, v) + ∑
v∈V

c(v, t)

= Cs,t(N) + ∑
(u,v)∈E

c(u, v) ≤ c|E|+ 2|E| = (c + 2)|E|.

Therefore, a blocking flow can be found in A + B + D + P ∈ O(|E|)
steps.

We next generalize theorems of Even and Tarjan for unit-capacity
networks [ET75] (they are independently described by Karzanov
[Kar73]) to determine runtime bounds for AUC-2 networks with
bounded total source and sink arc capacities. The proofs are analogous.
The theorem we desire is the following.

Theorem 2.15.2. Dinitz’s algorithm runs in O(|E|min(
√︁
|E|, |V|2/3))

time on an AUC-2 G-network N with bounded total source and sink arc
capacities Cs,t(N) ∈ O(|E|).
Lemma 2.15.3. Let N be an AUC-2 G-network with maximum flow value
M ̸= 0. For the zero flow, the distance from s to t is at most 2|E|

M + 2.

Proof. Define

Vi := {v ∈ V ∪ {s, t} | v is at distance i from s},

where unreachable vertices (i = ∞) are not of interest, and let l denote
the distance of t from s. Let Ei denote the set of arcs from Vi−1 to Vi.
Every Ei defines a cut in the network. For i = 2, . . . , l − 1, we have

2|Ei| ≥ M (2.23)

because these arcs have a capacity of two at most and M is the value
of the minimum cut. However, 2|E1| and 2|El | may be significantly

2.15 dinitz’s algorithm on auc networks 45

smaller than M because the arcs may have a capacity larger than two.
We account for them separately to arrive at

2|E| ≥
l

∑
i=1

2|Ei|

≥ 2|E1|+ (l − 2)M + 2|El | ≥ (l − 2)M,

so we have l ≤ 2|E|
M + 2.

Theorem 2.15.4. Dinitz’s algorithm runs inO(|E|3/2) time on an AUC G-
network N with bounded total source and sink arc capacities Cs,t(N) ≤ c|E|.
Proof. If M ≤

√︁
|E|, the result follows from Proposition 2.15.1 since

every phase increases the flow by at least one. Otherwise, consider the
phase in which the flow value F reaches the value M−

√︁
|E|. When

this phase begins, we have F < M−
√︁
|E|. The residual network Ñ is

an AUC-2 G-network. By Lemma 2.12.9, its maximum flow value is

M̃ = M− F > M−
(︃

M−
√︂
|E|
)︃
=
√︂
|E|.

Since the flow in the residual network is initially zero, by Lemma 2.15.3,
the length of the shortest augmenting path satisfies

l̃ ≤ 2|E|
M̃

+ 2 <
2|E|√︁
|E|

+ 2 = 2
√︂
|E|+ 2.

The number of phases until this point is thus at most 2
√︁
|E|+ 2, and

since at most
√︁
|E| phases are needed until completion, the total

number of phases is at most 3
√︁
|E|+ 2. Hence, the algorithm needs

O(|E|3/2) steps by Proposition 2.15.1.

Lemma 2.15.5. Let N be an AUC-2 G-network with maximum flow value
M ̸= 0. For the zero flow, the distance from s to t is at most

(2
√

2)|V|√
M

+ 1.

Proof. Define

Vi := {v ∈ V ∪ {s, t} | v is at distance i from s},

where unreachable vertices (i = ∞) are not of interest, and let l denote
the distance of t from s. We consider the cuts between Vi and Vi+1

for i = 0, . . . , l. Since M is the value of the minimum cut, the value
C(i, i+ 1) of the cut between Vi and Vi+1 must be at least M. Therefore,
we have 2(|Vi| · |Vi+1|) ≥ C(i, i + 1) ≥ M for 1 ≤ i ≤ l − 2 since every
arc from Vi to Vi+1 has a capacity of two at most. Therefore, for every
1 ≤ i ≤ l − 2, we have |Vi| ≥

√
M/2 or |Vi+1| ≥

√
M/2.

We now intend to sum over the cardinalities |Vi| for i = 0, . . . , l. We
would like to argue that for any two successive sets, one set has at least

46 preliminaries

√
M/2 vertices. In the worst case, the summation sequence would

alternate between values less than and greater or equal to
√

M/2.
However, in our case it is possible that |V1|, |Vl−1| are significantly
smaller than

√
M/2, since source and sink arc capacities can be larger

than two. Thus,

l − 1
2
·
√

M/2 ≤ 2 +
⌊︃

l − 1
2

⌋︃
·
√

M/2 ≤
l

∑
i=0
|Vi| ≤ |V|,

which leads to

l ≤ 2|V|√
M/2

+ 1 =
2
√

2|V|√
M

+ 1.

Theorem 2.15.6. Dinitz’s algorithm runs in O(|V|2/3|E|) time on an
AUC-2 G-network where the total source and sink arc capacities are bounded
as Cs,t(N) ≤ c|E|.

Proof. If M ≤ |V|2/3, the result follows since the flow increases at least
by one per phase of Dinitz’s algorithm. Otherwise, let F be the flow
value of the phase in which the flow reaches the value M− |V|2/3. We
have F < M− |V|2/3. By Lemma 2.12.9, the maximum flow value in
the residual network is

M̃ = M− F > M− (M− |V|2/3) = |V|2/3.

Since the flow in the residual network is initially zero, we can apply
Lemma 2.15.5: The length of the shortest path satisfies

l̃ ≤ 2
√

2|V|√
M̃

+ 1 <
2
√

2|V|√︁
|V|2/3

+ 1 = 2
√

2|V|2/3 + 1.

Thus the number of phases up to this point is at most 2
√

2|V|2/3 + 1,
and at most |V|2/3 phases remain, for a total of O(|V|2/3) phases. An
application of Proposition 2.15.1 yields the desired runtime bound.

3
T H E D E N S E S T S U B G R A P H P R O B L E M

3.1 definition and properties

The average density, or simply density, of a simple graph G = (V, E)
is defined as |E|/|V|. The density is an important measure in graph
theory. In case |E| ∈ Θ(|V|2) a family of graphs is called dense. In the
case |E| ∈ O(|V|) the family is called sparse.

Analogously, the density of a subgraph H = (VH, EH) ⊆ G is
defined as

d(H) :=
|EH |
|VH |

.

Definition 3.1.1. Let G be a simple graph. Its maximum density is

d∗(G) := max
H⊆G

|EH |
|VH |

,

and the densest subgraphs are the subgraphs for which the maximum
is attained.

A densest subgraph is always an induced subgraph. The value 2d∗

is sometimes called the maximum average degree.
The densest subgraph problem is the problem of finding a densest

subgraph. As we shall see in Chapter 4, there is an algorithm that
approximates d∗ without returning a subgraph of approximate max-
imum density, hence one may study the problem of computing the
maximum density in its own right.

We note that there is also a notion of maximum density in directed
graphs, and some techniques to compute it are similar to the ones
used for the undirected case [Cha00a; KS09a].

A densest subgraph need not be connected. However, finding
a connected densest subgraph is not more difficult than finding a
densest subgraph. We shall give some structural results for which we
need the following lemma.

Lemma 3.1.2. Let x, y, a, b > 0. Then

x
y
<

a
b
⇔ x + a

y + b
<

a
b

and

x
y
=

a
b
⇔ x + a

y + b
=

a
b

.

47

48 the densest subgraph problem

Proof. For the first equivalence, we have

x
y
<

a
b

⇔ xb < ya

⇔ xb + ab
ya + ab

< 1

⇔ x + a
y + b

<
a
b

.

The proof of the second equivalence is analogous with ‘<’ replaced
by ‘=’.

Bălălău et al. [Băl+15, Corollary 4.1] claim that if S1, S2 ⊆ V induce
densest subgraphs, then S1 ∩ S2 and S1 ∪ S2 also induce densest sub-
graphs. The claim for S1 ∩ S2 is obviously false for disjoint sets, which
is corrected in the following proposition. Our proof is elementary and
does not use LP theory. We later found out that a generalization to
matroids had been proved earlier by Catlin et al. [Cat+92], they at-
tribute it Tomizawa [Tom76]. The connection to matroids will become
apparent in Chapter 8.

Proposition 3.1.3 (Essentially [Tom76; Cat+92]). If H1, H2 ⊆ G are
densest subgraphs, then so is H1 ∪ H2. If in addition, H1 and H2 are not
disjoint, then H1 ∩ H2 is a densest subgraph.

Proof. Both claims hold if d∗ = 0. In the following, let d∗ > 0, and
denote H′ = H1 ∩ H2.

The first claim is obvious if H1 ⊆ H2 or H2 ⊆ H1. Otherwise, let
se := |EH′ |, sv := |VH′ | denote the shared edges and vertices of H1, H2,
neither of which is a subgraph of the other. Let

a := |EH1 |, x := |EH2 |,
b := |VH1 |, y := |VH2 |,

a′ := a− se, x′ := x− se,

b′ := b− sv, y′ := y− sv.

If H1, H2 are disjoint, we have by Lemma 3.1.2

d(H1 ∪ H2) =
x + a
y + b

=
x
y

,

hence H1 ∪ H2 is a densest subgraph. If the two shared only ver-
tices, but not edges, then the denominator would be smaller than
y + b. Thus, H1 ∪ H2 would be denser than the densest subgraph, a
contradiction.

Therefore, we can assume in the following that the two are not
disjoint, and that all quantities are greater than zero. Clearly, we have

se + a′

sv + b′
=

a
b
=

x
y
=

se + x′

sv + y′
.

3.1 definition and properties 49

Assume for the sake of contradiction that

a′

b′
<

se

sv
.

Thus, by Lemma 3.1.2

a
b
=

a′ + se

b′ + sv
<

se

sv
= d(H′),

a contradiction to the fact that a/b equals the maximum density.
Hence,

a′

b′
≥ se

sv
. (3.1)

If this holds with equality, we can apply Lemma 3.1.2 to obtain

x
y
=

a
b
=

se + a′

sv + b′
=

a′

b′
,

and by another application

d(H1 ∪ H2) =
x + a′

y + b′
=

x
y

.

Hence H1 ∪ H2 is a densest subgraph. Likewise, if (3.1) is strict, we
use Lemma 3.1.2 to get

x
y
=

a
b
=

se + a′

sv + b′
<

a′

b′
.

From this, we derive

b′ <
ya′

x

⇒ y + b′ < y +
ya′

x
=

y(x + a′)
x

⇒ x
y
<

x + a′

y + b′
= d(H1 ∪ H2).

This is a contradiction to H2 being a densest subgraph.
We now prove the claim for intersection, where H1 and H2 are not

disjoint. Again, it is immediate if H1 ⊆ H2 or H2 ⊆ H1. We can again
assume that all quantities are greater than zero, because if H1 ∩ H2

contained only vertices, its density would be zero.
We saw in the proof of the first claim that (3.1) holds with equality

in this situation. Hence, by applying Lemma 3.1.2,

d(H1) =
se + a′

sv + b′
=

se

sv
= d(H′).

This concludes the proof.

50 the densest subgraph problem

Figure 3.1: The maximum density of the graph shown is two, and it is a
densest subgraph itself. The two subgraphs indicated by ovals
and their intersection graph are also densest subgraphs.

Proposition 3.1.3 is illustrated in Figure 3.1 on the current page.
Valari et al. [VKP12, Lemma 1] claim that for two induced subgraphs
H1, H2 that share at least one vertex and have the same density, the
union H1 ∪H2 has strictly higher density. This is false, Figure 3.1 gives
counterexamples with equal densities. In fact, there are examples of
(non-densest) induced subgraphs where the density of the union is
strictly smaller although they share vertices (for an example, substitute
the subgraph K5 in Figure 3.1 by K7). The preceding proof, however,
shows that the statement is true if the subgraphs are edge-disjoint. We
can now address the matter of finding connected densest subgraphs.

Proposition 3.1.4. Given a densest subgraph H of G, its connected com-
ponents are themselves densest subgraphs. In particular, there is always
a connected densest subgraph in G, and it can be recovered from a given
densest subgraph in O(|V|+ |E|) time.

Proof. The intuitive idea behind the proof is that if a connected com-
ponent C of a densest subgraph H had density less than d∗, then
removing it from H would result in a subgraph of greater density,
which is a contradiction to d∗ being maximum.

Let H ⊆ G be a densest subgraph, and let C1, . . . , Ck denote its
connected components. If all C1, . . . , Ck have the same density d, then
d∗ = d(

⋃︁k
i=1 Ci) = d by an argument similar to the union case of

Proposition 3.1.3. Thus, each Ci is a connected densest subgraph.
In case there are at least two different densities among the Ci, we

will deduce a contradiction. Components with the same density are
grouped into a single subgraph of the same density. Consider these
pairwise disjoint subgraphs S1, . . . , Sl in ascending order of density,
i.e., d(Si) < d(Si+1) for i = 1, . . . , l − 1. Note that d(

⋃︁l
i=1 Sl) = d∗.

3.1 definition and properties 51

Let H1, H2, H3 be disjoint subgraphs with d(H1) < d(H2) < d(H3).
By a twofold application of Lemma 3.1.2, we have

d(H1) < d(H2) < d(H3)

⇒ d(H1 ∪ H2) < d(H2) < d(H3)

⇒ d((H1 ∪ H2) ∪ H3) < d(H3).

By considering the subgraphs S1 ∪ S2, S1 ∪ S2 ∪ S3, . . . and applying
this argument inductively, we obtain

d∗ = d

(︄
l⋃︂

i=1

Sl

)︄
< d(Sl),

but this is a contradiction.
The connected components of a densest subgraph can be determined

in time O(|V|+ |E|) with depth-first search.

An easy, yet important consequence is the following lemma, which
will be used in Chapter 14 for an MILP formulation.

Lemma 3.1.5. A simple graph G is a forest if and only if d∗(G) < 1.
Moreover, the maximum density of a forest equals the average density of the
largest connected component (tree).

Proof. ‘⇐’: If G is cyclic, then its maximum density is at least one by
considering the cycle as a subgraph. The claim follows by contraposi-
tion.

‘⇒’ and ‘Moreover’: First note that a tree of n vertices has an average
density of (n− 1)/n. We can prove that this is indeed its maximum
density by induction over the number of vertices in the tree:

The claim is true by inspection for n = 1. Consider a tree with
n ≥ 2 vertices, and let the claim hold for all trees with up to n− 1
vertices. By Proposition 3.1.4, there is a connected densest subgraph,
which must be a tree. If it had less than n vertices, its maximum
density would be less than (n− 1)/n by the induction hypothesis, a
contradiction.

If G is a forest, then by Proposition 3.1.4, one densest subgraph
is a tree. By the above consideration, the largest connected compo-
nent (tree) of G has the highest density among all subtrees of G. In
particular, the maximum density of G is less than one.

Listing all densest subgraphs is, in general, not possible in polyno-
mial time. A simple way of constructing a graph with an exponential
number of densest subgraphs is to create n components, each con-
sisting of, say, a 3-cycle. Then, there are 2n = 2|V|/3 subgraphs with
(maximum) density 1. What can we say about connected graphs?

52 the densest subgraph problem

Proposition 3.1.6. Consider families of simple connected graphs G = (V, E)
with a fixed density d∗(G).

If d∗(G) < 1, there is exactly one connected densest subgraph in the
graph.

There is a family with d∗(G) = 1 that has Ω(2|V|) connected densest
subgraphs, and this is asymptotically maximal.

For every half-integral1 d∗(G) > 1, there is a family whose number of
connected densest subgraphs is in Ω(2|V|/(2d∗+1)).

Proof. The case d∗(G) < 1 follows from Lemma 3.1.5.
For the case d∗(G) = 1, consider a cycle of three vertices and select

one vertex v on it. Attach n vertices directly to v via n edges. The
cycle itself has a density of one. Any subgraph not containing the
cycle has a density of less than one by Lemma 3.1.5, as it is a forest.

Thus, every densest subgraph must contain the cycle. There are
2n possible ways of selecting vertices attached to the cycle. Selecting
a single vertex with its edge raises both the numerator and the de-
nominator of the density ratio by one, thus the density remains one.
The subgraphs created by selecting the vertices are connected, their
number is in Ω(2|V|). Since there are only 2|V| − 1 induced subgraphs
in any graph, this is asymptotically maximal.

Now consider a half-integral d∗(G) > 1. We sketch the argument,
it could be made more formal by using ideas from the preceding
theorems.

Let n ≥ 4 be such that d∗ = (n− 1)/2 = n(n− 1)/(2n). Consider a
complete graph C on n vertices with density (n− 1)/2. Further add m
copies C′i of the complete graph on n vertices, each with one arbitrary
edge removed. Each of the C′i has density (n− 1)/2− 1/n < (n− 1)/2.
Link each of these graphs to C via a single edge, the endpoints can
be chosen arbitrarily. Call the resulting graph G(m) = (V, E) with
|V| = n(m + 1). If one vertex from C is chosen, then choosing C in its
entirety increases the average density. The same holds for every C′i .
Furthermore, any connected subgraph that contains not only vertices
from one of the C′i must contain at least one vertex from C.

If one chooses C and an arbitrary subset of the C′i , together with the
respective connecting edges, the density is also (n− 1)/2. It follows
from the above discussion that (n − 1)/2 is indeed the maximum
density. As there are 2m possible ways of adding subsets of the C′i to
C, there are

2
|V|
n −1 = 2

|V|
2d∗+1−1

densest connected subgraphs.

1 A number x ∈ R+ is half-integral if x = k
2 for some k ∈N.

3.2 bounds on the maximum density 53

3.2 bounds on the maximum density

An obvious lower bound on d∗ is |E|/|V| by considering the whole
graph as a subgraph. We will now give better upper bounds than the
trivial |E|.

Lemma 3.2.1. For a simple graph G = (V, E) and a densest subgraph
H = (VH, EH) ⊆ G, we have

|VH | ≥
√︃

2|EH |+
1
4
+

1
2

.

Proof. A subgraph with |VH | vertices cannot have more edges than the
complete graph on |VH | vertices, i.e., |EH | ≤ (|VH |2 − |VH |)/2. The
claim follows by solving for |VH |.

We are now able to prove that d∗(G) ∈ O(
√︁
|E|), a crucial fact we

will exploit in the proof of Theorem 6.0.1.

Proposition 3.2.2. For a simple graph G = (V, E), we have

d∗(G) ≤ 1
4

(︃√︂
8|E|+ 1− 1

)︃
=

√︃
|E|
2

+
1

16
− 1

4
,

in particular, d∗(G) ≤
√︁
|E|/2.

Proof. It is easy to verify that

x√
2x + 1/4 + 1/2

=

√
8x + 1− 1

4
(3.2)

holds for every x ≥ 0. For a densest subgraph (VH, EH) of G, we have
by Lemma 3.2.1

d∗(G) =
|EH |
|VH |

≤ |EH |√︂
2|EH |+ 1

4 +
1
2

(3.2)
=

1
4

(︃√︂
8|EH |+ 1− 1

)︃

≤ 1
4

(︃√︂
8|E|+ 1− 1

)︃
,

=

√︃
|E|
2

+
1

16
− 1

4
.

It is readily verified that
√

a + b ≤ √a +
√

b for a, b ≥ 0. Applied to
above inequality we obtain d∗(G) ≤

√︁
|E|/2.

The bound of Proposition 3.2.2 holds with equality for complete
graphs. Asymptotically equivalent bounds have been known before
for the arboricity Γ(G) and pseudoarboricity p(G) of the graph, which
are both upper bounds on d∗(G). We conclude our structural investi-
gations with another bound, which improves over a bound previously
known. All these previous bounds will be discussed in Section 8.4.

54 the densest subgraph problem

Proposition 3.2.3. For a simple graph G = (V, E) we have

d∗(G) ≤ ∆(G)/2.

Proof. Consider a densest subgraph H = (VH, EH) of G. Assume that
d∗ = |EH |

|VH | >
∆
2 . We obtain

|EH | >
|VH |∆(G)

2
≥ ∑v∈VH

degG(v)
2

≥ ∑v∈VH
degH(v)
2

(2.1)
= |EH |,

a contradiction.

An alternative proof via LP theory will be given in Section 3.5.

3.3 algorithms for the densest subgraph problem

Despite the exponential number of (induced) subgraphs of a graph,
and possibly an exponential number of densest subgraphs, a densest
subgraph can be found in polynomial time. In this section, we will
review several existing approaches.

3.3.1 0-1 Fractional Programming

Picard and Queyranne [PQ82] formulated the problem as a 0-1 frac-
tional programming problem, which is defined as follows. Let A, B ⊆
P({1, . . . , n}) and aS, bT ∈ R for all S ∈ A and T ∈ B, respectively,
with aS ≥ 0 if |S| ≥ 2 and bT ≤ 0 if |T| ≥ 2. Consider the problem

max
f (x1, . . . , xn)

g(x1, . . . , xn)
=

∑S∈A aS ∏i∈S xi

∑T∈B bT ∏j∈T xj

s. t. (x1, . . . , xn) ̸= 0,

xi ∈ {0, 1}, i = 1, . . . , n,

with the promise that for all x = (x1, . . . , xn) ̸= 0, g(x) > 0 and
f (x)/g(x) ≥ 0. The densest subgraph problem is easily seen to be the
special case

f (x)
g(x)

=
∑uv∈E auvxuxv

∑v∈V xv
,

where auv = 1 if uv ∈ E and zero otherwise, and the other variables are
defined in a straightforward manner. Note that f (x)/g(x) is actually
the maximum average degree, twice the maximum density.

Picard and Queyranne show how the 0-1 fractional programming
problem can be solved with a sequence of up to |V| maximum flow
computations on a sequence of nested subgraphs of G. We will not
review their approach because we will next see algorithms that use
O(log |V|) flow computations.

3.3 algorithms for the densest subgraph problem 55

3.3.2 The Provisioning Problem

As noted (but not explicitly proved) by Kortsarz and Peleg [KP94],
the densest subgraph problem can be solved by a (Turing-)reduction
to the provisioning problem discussed by Lawler [Law76] (see also
[Rhy70; Bal70]).

Let there be items {1, . . . , n} of cost ci for i = 1, . . . , n, and sets
Sj ⊆ {1, . . . , n} for j = 1, . . . , m. A set Sj has value vj if all items
contained in it are purchased. What is the optimal choice of items?
We can formulate an integer linear program by introducing indicator
variables xi for selecting item i and sj for selecting item set j as follows:

max
m

∑
j=1

sj −
n

∑
i=1

ci (3.3)

s. t. xi ≥ sj, i ∈ Sj, j = 1, . . . , n, (3.4)

xi ∈ {0, 1}, i = 1, . . . , n, (3.5)

sj ∈ {0, 1}, j = 1, . . . , m. (3.6)

This ILP can be reduced to a flow problem on a bipartite network
[Bal70; Law76], which enables us to solve the ILP in polynomial time.
In fact, we will see this bipartite flow network in Section 3.6 via a
different approach. For this reason, we omit the details and postpone
the runtime analysis to that section. We next show that the maximum
density problem can be solved via the provisioning problem, which is
not immediately obvious.

For some numberings of V and E, let V be the set of items, and let
the edges e ∈ E be the sets Se. We set the value of an edge to be ve = 1,
and the cost of each vertex cv = d for some d ∈ R+

0 .

Lemma 3.3.1. If c(v) = d for all v ∈ V, the ILP (3.3)-(3.6) has a feasible
solution of value at least zero if and only if a subgraph of density at least d
exists.

Proof. If there is a subgraph H = (VH, EH) of density |EH |/|VH | ≥ d,
then setting xv = 1 for all v ∈ VH and se = 1 for all e ∈ EH and all
other variables to zero clearly gives us a feasible solution. Its objective
value is |EH | − d|VH | ≥ 0.

If there is a feasible integral solution (x, s) of value at least zero,
then select exactly the vertices and edges whose variable assignments
equal one. These form a subgraph H = (VH, EH). The objective value
of (x, s) is |EH | − d|VH | ≥ 0, hence |EH |/|VH | ≥ d.

In order to determine d∗, one can use Lemma 3.3.1 and a binary
search to find the smallest feasible d. That the binary search termi-
nates after a polynomial number of steps is perhaps not immediately
obvious because the maximum density is a rational number. This will
be addressed in the review of the next algorithm.

56 the densest subgraph problem

3.3.3 Goldberg’s Method

Goldberg [Gol84] proposed an approach that solves only O(log |V|)
flow problems. We will call the cut ({s}, V ∪ {t}) in a G-network
the singleton cut. As we shall see, it requires special attention. The
following theorem is illustrated in Figure 3.2.

A B

C D E

(a)

A B

C D E

s t

1

1 1

1

1 1

1 11 11 1
6

6

6

6

6

5.4

7.4

6.4

5.4

5.4

(b)

E

t

A B

C D

s t

0.2

0.4

1

0.2

6

5.6

6

6

6

5.4

7

6.4

5.4

5.4

(c)

Figure 3.2: (a) A simple graph with d∗ = 1.25. The vertices {A, B, C, D}
induce the unique densest subgraph. (b) Goldberg’s flow network
for test value d = 1.2. (c) A maximum flow in the network for
d = 1.2 (edges that carry zero flow are not shown). A non-
singleton minimum cut is indicated by blue vertices. The cut
corresponds to a set of vertices that induce a subgraph of density
greater 1.2 (here, the densest subgraph.)

3.3 algorithms for the densest subgraph problem 57

Theorem 3.3.2 ([Gol84]). Let G = (V, E) be a simple graph. Define a
parameterized flow network N = (V ′, E′, c, d) by

V ′ := V ∪̇ {s, t},
E′ := E ∪ {(s, v) | v ∈ V} ∪̇ {(v, t) | v ∈ V},

c(s, v) := |E|, v ∈ V,

c(u, v) := 1, uv ∈ E,

c(v, t) := |E|+ 2d− deg(v), v ∈ V.

A flow of |V||E| is feasible in N if and only if d ≥ d∗(G). Moreover, if
d < d∗, every minimum cut corresponds to a subgraph of density greater d,
and if d = d∗, every minimum cut except the singleton cut corresponds to a
densest subgraph.

Proof. For test value d ≥ 0, consider an arbitrary cut (S, T) of N and
denote S′ = S \ {s} and T′ = T \ {t}. If S′ = ∅, then the cut capacity
is |V||E|, otherwise it is given by

c(S, T) = ∑
u∈S,v∈T

c(u, v)

= ∑
v∈T

c(s, v) + ∑
v∈S

c(v, t) + ∑
u∈S,v∈T

c(u, v)

= |E||T′|+
(︄
|E||S′|+ 2d|S′| − ∑

v∈S′
deg(v)

)︄
+ ∑
u∈S′,v∈T′

c(u, v)

= |E||V|+ 2|S′|
(︃

d− ∑v∈S′ deg(v)−∑u∈S′,v∈T′ 1
2|S′|

)︃
= |E||V|+ 2|S′|(d− dS′), (3.7)

where

dS′ :=
∑v∈S′ deg(v)−∑u∈S′,v∈T′ 1

2|S′|

is exactly the density of the graph G[S′].
Consider the case d < d∗ and a set S′ ̸= ∅ of vertices. If dS′ ≤ d, the

cut’s capacity is at least the capacity |V||E| by (3.7), which equals the
capacity of the singleton cut. If dS′ > d, then by (3.7) the cut (S, T) has
smaller capacity than the singleton cut ({s}, V ∪ {t}). There is such a
set S′, for example the set of vertices of a densest subgraph. Therefore,
the singleton cut is not a minimum cut, and a flow of value |V||E| is
not feasible by the MFMC Theorem. Moreover, every minimum cut
corresponds to a subgraph of density greater than d. (It need not be a
densest subgraph because of the factor |S′| in (3.7).)

If d ≥ d∗, then (3.7) implies that the singleton cut ({s}, V ∪ {t}) is a
minimum cut. By the MFMC Theorem, the maximum flow value is
|V||E|. If d > d∗, the singleton cut is the only minimum cut. If d = d∗,

58 the densest subgraph problem

the densest subgraphs are minimum cuts as well, and all other cuts
are not minimum. (This last case was not covered by Goldberg.)

Note that we can, similarly to Lemma 2.14.2, subtract |E| − deg(v)
from the source and sink arcs in order to get the capacities c(s, v) =
deg(v) and c(v, t) = 2d. We call this the modified Goldberg network. The
capacity reduction is not as strong as the one in Lemma 2.14.2, but it
can be explicitly stated irrespective of d.

If the graph has nonnegative integer weights on the edges or vertices,
or both, we can use essentially the same approach [Gol84]:

Let w : E ∪ V → N0 be the weight function. If the weights are
rational, one can scale them in order to obtain nonnegative integers.
For a subgraph H = (VH, EH), its density is then defined as

d(H) :=
∑e∈EH

w(e) + ∑v∈VH
w(v)

|VH |
, (3.8)

and we further define the weighted degree degw(v) := ∑uv∈E w(uv).
Goldberg’s network can be adapted in the following way:

V ′ := V ∪̇ {s, t},
E′ := E ∪ {(s, v) | v ∈ V} ∪̇ {(v, t) | v ∈ V},

c(s, v) := m, v ∈ V,

c(u, v) := w(uv), uv ∈ E,

c(v, t) := m + 2d− degw(v)− 2w(v), v ∈ V,

where m is chosen large enough such that no capacity is negative. The
correctness proof of this method is analogous to the proof of Theo-
rem 3.3.2. We will, however, only consider the unweighted problem in
this thesis.

Equipped with Theorem 3.3.2, one can employ a binary search to
find the maximum density by constructing the flow network parame-
terized with the test value, and finding a non-singleton minimum cut
(if one exists). Fortunately, the maximum density is a rational number.

Lemma 3.3.3 ([Gol84]). If H is a subgraph of G of density d, and no
subgraph has a density greater or equal to d + 1/(|V|(|V| − 1)), then H is
a densest subgraph.

Proof. We have

d∗ ∈ {m/n | 0 ≤ m ≤ |E|, 1 ≤ n ≤ |V|}.

The difference D between two different possible values in this set is

D =
m1

n1
− m2

n2
=

m1n2 −m2n1

n1n2
.

If n1 = n2, then m1 ̸= m2, and thus

|D| ≥ 1
n1
≥ 1
|V| ≥

1
|V|(|V| − 1)

.

3.3 algorithms for the densest subgraph problem 59

Otherwise, n1n2 ≤ n(n − 1), and as the numerator cannot be zero,
|D| ≥ 1/(|V|(|V| − 1)).

Lemma 3.3.3 implies that the binary search can be stopped once the
difference between upper and lower bound is at most 1/(|V|(|V| − 1)),
as then the subgraph returned from the largest test value d ≤ d∗ has
density d∗.

In the proof of the following theorem, Goldberg makes a subtle
mistake: For test value d = d∗, the singleton cut ({s}, V ∪ {t}) is a
minimum cut that does not correspond to a densest subgraph. One has
to adapt the minimum cut algorithm in the proof of Theorem 2.12.5
such that a minimum cut other than the singleton cut is returned,
provided one exists.

Theorem 3.3.4 ([Gol84]). A densest subgraph of a graph G = (V, E) can
be determined in time O(M(|V|+ 2, |E|+ 2|V|) log |V|), where M(n, m)

is the time to determine a maximum flow on a network of n nodes and m
arcs.

Proof. Perform the binary search while the difference between upper
and lower bound is greater than 1/(|V|(|V| − 1)). The set of poten-
tial test values is thus bounded by O(|V|3), and the binary search
performs O(log |V|) maximum flow computations.

After a maximum flow f has been determined, we need to find a
minimum cut other than the singleton cut (if one exists). To this end,
we ‘mirror’ the flow network: t becomes the source and s becomes the
sink, and all arcs are directed in the opposite direction. We mirror f
analogously, which is feasible because both capacity constraints and
flow conservation are satisfied. The cut capacities of the mirrored
network are identical to those of the original network, so by an ap-
plication of the MFMC Theorem, the mirrored flow is maximum. We
now determine a minimum cut (T, S) starting from the new source t
with BFS as in the proof of Theorem 2.12.5. Unless ({s}, V ∪ {t}) is
the only minimum cut in the original network, (T, S) must be different
from it. Again, by the MFMC theorem, this minimum cut corresponds
to a minimum cut in the original network, and it is not the singleton
cut ({s}, V ∪ {t}). The runtime for mirroring and determining the cut
is linear.

By using a primal-dual technique, Georgakopoulos and Politopoulos
[GP07] show how a subgraph of the graph can be removed when a test
in the binary search fails. However, they were not able to prove a better
runtime estimate based on this. It would be interesting to investigate
if this approach translates to the flow-based approaches in Chapter 4,
and if the reduced graphs can be aligned with the ‘nested graphs’
that Picard and Queyranne [PQ82] describe. We do not review their
modification here, which has a quite complicated analysis. However,

60 the densest subgraph problem

it can be easily implemented, and we will report experimental results
for it in Chapter 12.

When Goldberg’s paper was written, the fastest known2 maxi-
mum flow algorithm, due to Sleator and Tarjan [ST81], had runtime
O(|V||E| log |V|), so the total runtime was O(|V||E|(log |V|)2).

Gallo, Grigoriadis and Tarjan [GGT89] describe an algorithm (‘GGT’)
based on the push-relabel paradigm for parametric flow problems
where the source and sink arc capacities are nonincreasing and nonde-
creasing functions of the parameter, respectively. When the parameter
is increased, the flow from the previous maximum flow computa-
tion can be re-used. This can be applied to Goldberg’s network
(leading to a ‘linear3 search’ over parameter d) for a total runtime of
O(|V||E| log(|V|2/|E|). This even holds in the weighted setting (see
also [Che95]). Goldberg’s runtime estimates for the weighted versions
of the problem were worse, yet still polynomial.

However, the GGT algorithm does not generally benefit from the de-
velopment of faster flow algorithms, as it is based on the push-relabel
paradigm. Gusfield and Tardos [GT94] gave an improvement with
runtime O(|V|2

√︁
|E|) if the number of flow problems is in O(|V|).

However, the number of possible test values and thus the number of
flow problems is much larger in our case (see also Section 6.1).

If we use Goldberg’s binary search, the numerators and denomi-
nators of capacities can be polynomially bounded, and we can scale
the capacities to obtain integral capacities bounded by a polynomially
large U. Then, it is possible to use an algorithm tailored to integral
capacities (see Subsection 2.12.4).

Theorem 3.3.5. The densest subgraph problem can be solved in time

O
(︃
|E|min

(︃
|V|2/3,

√︂
|E|
)︃

log
(︃ |V|2
|E|

)︃
log2 |V|

)︃
with the Goldberg–Rao algorithm and in time

Õ
(︃
|E|
√︂
|V| · log3 |V|

)︃
= Õ

(︃
|E|
√︂
|V|
)︃

with the Lee–Sidford algorithm.

We do not find Mảdry’s flow algorithm for integer capacities to
be useful because its runtime includes a factor of U1/7, which is
unreasonably large after scaling.

3.4 integral test values and smaller search intervals

If we only use integral test values for d∗, Goldberg’s algorithm de-
termines ⌈d∗⌉ and an ‘almost-densest’ subgraph of density greater

2 For dense graphs, several algorithms with runtime O(|V|3) were available, e.g.,
[Kar74].

3 Of course, we can re-use existing flows in a binary search as well by storing the flow
found for the last unsuccessful test.

3.4 integral test values and smaller search intervals 61

⌈d∗⌉ − 1. In this case, we are able to give slightly better runtime
estimates. Interestingly, ⌈d∗⌉ equals the smallest maximum indegree
(Section 3.5) and the pseudoarboricity (Chapter 8).

Let us take a look at the factor log |V| incurred by the binary search.
Recall that for fractional test values, there are Ω(|V|2) potential values
for the search. If we restrict ourselves to integral test values, O(log d∗)
tests suffice. One way of achieving this is to perform an exponential
search [Kow06]: Start testing with d = 1 and double d until the first
successful test. Then ⌈d∗⌉ ≤ d ≤ ⌊2d∗⌋ after O(log d∗) tests, and the
following binary search performs O(log d∗) tests when using d as an
upper bound.

Another method is to use an algorithm specifically developed for
approximation to obtain an upper bound. We will see that a 2-
approximation of d∗ can be determined in time O(|E|) in Chapter 7,
which reduces the runtime to find a 2-approximating upper bound
considerably. However, we will apply a more general technique in
Chapter 6 that uses a (1 + ϵ)-approximation to obtain an even smaller
search interval. As we learned after [Blu16] was accepted for publica-
tion, Bezáková had hinted at such a technique for the pseudoarboricity
problem in her master’s thesis [Bez00] at a time when no approxima-
tion scheme was known.

The idea behind the following technical lemma is as follows. If we
use a trivial lower bound and a (1 + ϵ)-approximation as an upper
bound, the search interval size is in O(d∗). However, if we use the
approximation to set a lower bound as well, we can reduce the interval
size to O(ϵd∗). Thus, a binary search performs O(log(ϵd∗)) tests.

Lemma 3.4.1. Let I be an interval of integers, and let x ∈ I be the minimum
value for which a (decidable) property holds. Furthermore, let the property
hold for all x′ ∈ I with x′ > x. Given an approximation d ∈ I for x with
x ≤ d ≤ ⌈(1 + ϵ)x⌉ for some ϵ > 0, a binary search for x can be realized
with O(log(ϵx)) tests.

Proof. We have d − 1 ≤ (1 + ϵ)x and can obtain the lower bound
(d− 1)/(1 + ϵ) ≤ x. Let L denote the size of the interval

I ∩ {⌈(d− 1)/(1 + ϵ)⌉ , . . . , d− 1}

of integral values for x that remain to be checked. We have

L ≤ (d− 1)−
⌈︃

d− 1
1 + ϵ

⌉︃
+ 1 ≤ (1 + ϵ)x− d− 1

1 + ϵ
+ 1.

62 the densest subgraph problem

Now, we apply the bounds x ≤ d and ϵ > 0 and obtain

L ≤ (1 + ϵ)x− x− 1
1 + ϵ

+ 1

<
(1 + ϵ)2x− x

1 + ϵ
+ 2

=
(ϵ2 + 2ϵ)x

1 + ϵ
+ 2

=

(︃
ϵ +

ϵ

1 + ϵ

)︃
x + 2 < 2ϵx + 2.

Thus, we need to perform O(log(ϵx)) tests in the binary search on I
at most.

Theorem 3.4.2. To compute ⌈d∗⌉, along with a subgraph of density greater
than ⌈d∗⌉ − 1, Goldberg’s method can be made to run in time

O
(︃
|E|min

(︃√︂
|E|, |V|2/3

)︃
log d∗

)︃
with Dinitz’s algorithm, and in time

Õ
(︂
|E|10/7 log d∗

)︂
= Õ

(︂
|E|10/7

)︂
with Mảdry’s algorithm for unit capacities, and in time

Õ
(︃
|E|
√︂
|V| log d∗

)︃
= Õ

(︃
|E|
√︂
|V|
)︃

with the Lee–Sidford algorithm.

Proof. Obtain a 2-approximation d with the greedy algorithm in Chap-
ter 7. Since d is integral, we have ⌈d∗⌉ ≤ d ≤ 2d∗ ≤ 2 ⌈d∗⌉ = ⌈2 ⌈d∗⌉⌉.
By applying Lemma 3.4.1 with x = ⌈d∗⌉ and ϵ = 1, performing the
binary search is possible with O(log d∗) tests (instead of log |V|).

For every integral test value g, we construct Goldberg’s network
and reduce capacities either by Proposition 2.14.3 or use ‘modified
network’ we described in the previous section. For every test value d
in the search, we compute the maximum flow and check whether it
saturates all source arcs (Theorem 3.3.2).

For Dinitz’s algorithm, Theorem 2.15.2 can be applied for each test.
For the Lee–Sidford algorithm, the runtime is immediate. Mảdry’s
algorithm allows parallel arcs in the flow network [Mảd13], i.e., the
flow network is a multigraph. After the capacity reduction we can
split every source arc (s, v) into c(s, v) parallel unit capacity arcs from
s to v. We proceed analogously for the sink arcs. The number of arcs
in this modified network is in O(|E|).

Once we have determined ⌈d∗⌉, a test for d = ⌈d∗⌉ − 1 allows us to
return a minimum cut as a subgraph of density greater ⌈d∗⌉ − 1.4

4 Note that since ⌈d∗⌉ − 1 < d∗, we need not exclude the singleton cut here.

3.5 linear programs for the densest subgraph problem 63

With the above theorem, an ‘almost-densest subgraph’ can be de-
termined faster than a densest subgraph with Theorem 3.3.5. This
improvement is not purely theoretical: Dinitz’s algorithm on almost
unit capacity networks is quite simple and can be expected to be faster
in practice than the rather involved Goldberg–Rao flow algorithm (see
Subsection 2.12.4) used in Theorem 3.3.5.

The runtime for integral test values can be further reduced (Chap-
ters 5 and 6). To this end, we will establish a relationship of the densest
subgraph problem with graph orientations in the following section.

3.5 linear programs for the densest subgraph problem

Charikar [Cha00a] proposes the following linear programming formu-
lation for computing the maximum density:

max ∑
uv∈E

xuv (3.9)

s. t. ∑
v∈V

yv ≤ 1, (3.10)

xuv ≤ yu, yv, uv ∈ E, (3.11)

xuv ≥ 0, uv ∈ E, (3.12)

yv ≥ 0, v ∈ V. (3.13)

While the LP objective is to select as much of the edges as possible
while putting little mass on the vertex variables, it is not immediately
clear that the LP’s optimum value is equal to d∗. In order to show this,
Charikar uses the following lemmata.

Lemma 3.5.1 ([Cha00a]). For any subgraph H of G, the optimum value of
(3.9)-(3.13) is at least d(H).

Proof. Let H = (VH, EH) ⊆ G. For every v ∈ VH, set yv = 1/|VH | and
for every uv ∈ EH, set xuv = 1/|VH |. This is a feasible solution to the
LP (3.9)-(3.13) with value |EH |/|VH | = d(H).

Charikar next proves that for an LP solution of value v, there exists
a subgraph of this density. We add a trivial runtime analysis for the
construction of such a subgraph from the LP solution.

Lemma 3.5.2 ([Cha00a]). Let G = (V, E) be the input graph. Given a
feasible solution to (3.9)-(3.13) with value v, a subgraph H with d(H) ≥ v
can be constructed in time O(|E|+ |V| log |V|).

Proof. Consider a feasible solution (x, y) with ∑uv∈E xuv = v. Without
loss of generality, assume that xuv = min(yu, yv).

For a parameter r ∈ [0, 1], let

V(r) = {v ∈ V | yv ≥ r},
E(r) = {uv ∈ E | xuv ≥ r}.

64 the densest subgraph problem

Note that if uv ∈ E(r), then u, v ∈ V(r). Moreover, if u, v ∈ V(r) then
uv ∈ E(r) by the assumption xuv = min(yu, yv). Thus, E(r) is exactly
the set of edges induced by V(r). We have∫︂ 1

0
|V(r)| dr ≤ 1 (3.14)∫︂ 1

0
|E(r)| dr = ∑

uv∈E
xuv. (3.15)

This is due to the fact that a vertex v raises V(r) by one from 0 to yv.
Therefore, the total area of the integral is the sum ∑v∈V yv, which is
bounded by one according to (3.10). Analogously, one shows (3.15).

We now show there exists an r ∈ [0, 1] such that |E(r)|/|V(r)| ≥ v,
then the subgraph (V(r), E(r)) has density at least v. To see this,
assume there is no such r. We obtain

v = ∑
uv∈E

xuv
(3.15)
=

∫︂ 1

0
|E(r)| dr < v

∫︂ 1

0
|V(r)| dr

(3.14)
≤ v,

a contradiction.
To obtain a set S such that d(G[S]) ≥ v, sort the values yv in

descending order in time O(|V| log |V|). Then, starting from the
largest y-value and going down to the smallest, gradually add the
vertices v with yv ≥ r to S and grow the set E[S] = E(r) of induced
edges simultaneously. This is possible in time O(|E|). Record the
maximum of |E(r)|/|S(r)| during this computation. Then identify a
set S that obtained the maximum in a second run of the algorithm,
and return it.

Theorem 3.5.3 ([Cha00a]). The optimum value of the LP (3.9)-(3.13) is
d∗.

Proof. Let OPT denote the optimum value of the LP. By Lemma 3.5.1,
OPT ≥ d∗, and by Lemma 3.5.2, d∗ ≥ OPT. Therefore, OPT = d∗.

In an unpublished extended version of [KS09a], Khuller and Saha
consider the LP where (3.10) is required with equality, which affects
neither feasibility nor the optimum value.

Theorem 3.5.4 ([KS09b]). The LP (3.9)-(3.13), where (3.10) is required
with equality, has an optimal solution where all values yv greater than zero
are equal. Furthermore, for any optimal solution, the vertices v with yv > 0
induce a densest subgraph.

Bălălău et al. [Băl+15] independently show the furthermore-part. A
direct consequence is that, given an optimal solution to the modified
LP, a densest subgraph can be constructed in time O(|E|) instead of
O(|E| + |V| log |V|). Theorem 3.6.2 will show how to achieve this
from an optimum solution to the dual LP.

3.6 the bipartite orientation network 65

The dual of the LP (3.9)-(3.13) is the following:

min d (3.16)

s. t. d− ∑
uv∈E

fuv,v, ≥ 0, v ∈ V, (3.17)

fuv,u + fuv,v = 1, uv ∈ E, (3.18)

fuv,u, fuv,v ≥ 0, uv ∈ E, (3.19)

d ≥ 0. (3.20)

Here, we modified the actual dual constraint fuv,u + fuv,v ≥ 1 to hold
with equality, which affects neither feasibility nor the optimum value.
It is then possible to reduce the number of variables from 2|E|+ 1 to
|E|+ 1, since we can substitute fuv,u = 1− fuv,v. This is used in our
LP implementation in Chapter 12.

The Strong Duality Theorem implies that the dual LP has the same
optimum value as (3.9)-(3.13). The dual LP has been independently
examined by Cohen [Coh10] and Venkateswaran [Ven04], and has a
simple interpretation: every edge uv of the graph can be fractionally
oriented to its two endpoints with fuv,u and fuv,v, and the maximum
fractional indegree d is to be minimized.

We can now state an alternative proof to Proposition 3.2.3.

Alternative proof of Proposition 3.2.3. Set fuv,u = 1/2 = fuv,v for every
edge and d = ∆/2. The total value of fractional assignments for a
vertex v ∈ V is

∑
uv∈E

fuv,v = deg(v)/2 ≤ ∆/2 = d.

Hence, (fu, fv, d) is a feasible solution and thus, d∗ ≤ d = ∆/2.

3.6 the bipartite orientation network

The fractional orientation variables in the previous section were sug-
gestively denoted by f because they correspond to a flow in a certain
network. We give an alternative proof of Theorem 3.5.3, which uses
the following lemma. A proof sketch is due to Cohen [Coh10]. We will
refer to the network defined in the lemma as ‘the bipartite network’
throughout the thesis. As we noted for the provisioning problem,
a generalization was previously known [Bal70; Law76] (see also the
remarks in [GGT89]), a weighted version is used by Chen [Che95].
It is also independently described by Aichholzer et al. [AAR95]. An
example of the bipartite network can be seen in Figure 3.3 on the
following page.

66 the densest subgraph problem

A B

C D E

(a)

AB

AC

BC

BD

CD

DE

A

B

C

D

E

ts

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1
1

d

d

d

d

d

(b)

DE E

ts

AB

AC

BC

BD

CD

A

B

C

D

1

1

1

1

1

1

5
8

5
8

0

1

3
8

3
8

4
8

3
8

5
8

5
8

3
8

4
8

5
4

5
4

5
4

5
4

1

(c)

Figure 3.3: (a) A simple graph with d∗ = 5/4. (b) The corresponding bipartite
flow network for a test value d. (c) A maximum flow in the
network for d = 5/4. A non-singleton minimum cut is indicated
with blue vertices. It is returned when mirroring the network and
searching in the residual network from t.

3.6 the bipartite orientation network 67

Lemma 3.6.1 ([Coh10]). Let G = (V, E) be a simple graph. For d ≥ 0,
consider the following parameterized flow network Nd = (V ′, E′, c, d), a
bipartite graph augmented with a source and sink:

V ′ := E ∪̇ V ∪̇ {s, t},
E′ := {(e, u) | uv = e ∈ E} ∪̇ {(s, e) | e ∈ E} ∪̇ {(v, t) | v ∈ V},

with capacities

c(s, e) := 1, e ∈ E,

c(e, u) := 1, e ∈ E, u ∈ e,

c(v, t) := d, v ∈ V.

There is a feasible (and maximum) flow of value |E| in Nd if and only if
d ≥ d∗(G).

Proof. Let H = (VH, EH) be a densest subgraph of G.
‘⇒’: If a flow of value |E| is feasible, then |EH | will be sent from

the sink to the edge nodes corresponding to EH . It is then propagated
to the nodes corresponding to VH . Since each vertex node can pass at
most d to the sink, we must have d|VH | ≥ |EH | ⇔ d ≥ |EH |

|VH | = d∗.

‘⇐’: If d ≥ d∗ = |EH |
|VH | , we show that the cut through the arcs from

s to the edge nodes is a minimum cut with value |E|. By the MFMC
Theorem, the value of the minimum cut is equal to the value of the
maximum flow, so the flow of value |E| is feasible.

Consider an arbitrary cut of the network. Let T be the set of
edge nodes on the t-side of the cut. These contribute |T| to the cut
capacity by their incoming arcs. Let S ⊆ V be the set of vertices
whose corresponding vertex nodes are on the s-side of the cut. These
contribute |S|d to the cut. Note that for the set of edges induced by
S in G, E[S], we have d ≥ |EH |/|VH | ≥ |E[S]|/|S|. The total number
of outgoing edges of the edge nodes is 2|E|. To obtain the true value
they contribute to the cut with their outgoing arcs, we have to subtract
from this number as follows. Subtract 2|T| for the edge nodes on the
t-side. Subtract at most 2E[S] for the edges induced by S: if such an
edge is on the s-side, its outgoing arcs do not leave the s-side, if it is
on the t-side, it is part of T and has already been accounted for. Let
E[S] denote the set of edges not induced by S, but whose edge nodes
are on the s-side of the cut. Such an non-induced edge has either one
or two end vertices on the t-side. The latter each contribute two to the
cut, so we only have to subtract one for the edges that have exactly
one end in S. Their number is at most E[S]. Thus, the cut capacity C
is at least

C ≥ |S|d + |T|+ (2|E| − 2|T| − 2|E[S]| − |E[S]|)
≥ |E[S]|+ 2|E| − |T| − 2|E[S]| − |E[S]| (3.21)

= 2|E| − (|T|+ |E[S]|+ |E[S]|) ≥ |E|.

68 the densest subgraph problem

If d ≥ d∗, d and a maximum flow in the network Nd correspond a
feasible solution to the LP (3.17)-(3.20): The flow sent from the source
to an edge node is exactly one and must be split to the two endpoints
of the corresponding edge, modelling (3.18). The vertices can absorb
d at most, which is modeled in (3.17).

Likewise, if (fu, fv, d) is a solution to the LP, then it corresponds to a
maximum flow of value |E| in the network Nd. Using a maximum flow
algorithm in a binary search for the minimum feasible d allows for
better runtimes than solving the dual LP with linear program solvers.
Can we construct a densest subgraph from an optimal dual solution?

Theorem 3.6.2. Let a maximum flow in the bipartite network be given for
test value d = d∗. For any densest subgraph H = (VH, EH), the cut
CH = {s} ∪ EH ∪ VH is a minimum cut in the bipartite network. Apart
from these cuts and the singleton cut through the source arcs, there are no
minimum cuts for this test value.

Proof. The arcs going from s to the edge nodes corresponding to E \ EH

contribute |E| − |EH | to the cut CH. The arcs going from the vertex
nodes corresponding to VH to t each have capacity d∗ = |EH |/|VH |, so
they contribute |EH | to the cut in total. Thus, the cut capacity is |E|.
By Theorem 3.6.1, this is the minimum capacity.

To see that all other cuts except the singleton cut have a higher
capacity, let S ⊆ V be the set of vertex nodes on the s-side and T ⊆ E
be the set of edge nodes on the t-side.

If |S| = 0, every edge node contributes one to the cut if it is on the
t-side, otherwise it contributes two. Therefore, only the cut {s} has
capacity |E|. (We do not consider G[∅] to be a subgraph.)

If |S| ≥ 1, and it is not the set of vertices of a densest subgraph, then
|E[S]|/|S| < d∗ = d, so |S|d > |E[S]|. Thus, we see strict inequality in
(3.21), so the cut’s capacity exceeds |E| and it is thus not minimum.

If S is a set of vertices and E \ T ̸= E[S], i.e., the cut does not
represent an induced subgraph, we can show that its capacity also
exceeds |E|: The nodes corresponding to S contribute |S|d. Every
edge node not on the s-side of the cut contributes one to the cut.
If it is in E[S], this means an excess compared to the situation of
the cut corresponding to an induced subgraph (where the edge node
contributes zero to the cut), regardless of it being densest or not. If it is
not in E[S], there is no change with respect to the situations discussed
above. If an edge node not in E[S] is on the s-side of the cut, it adds
an additional two to the cut capacity. Whether (S, E[S]) is a densest
subgraph or not, in both cases the cut capacity exceeds |E| by above
considerations. We can determine a non-singleton cut by ‘mirroring’
the flow network as we did in the proof of Theorem 3.3.4.

In contrast to Goldberg’s method for test values d ≤ d∗, it is unclear
how to obtain a subgraph of density at least d unless we hit d = d∗

3.6 the bipartite orientation network 69

exactly. On the other hand, we can determine a fractional d-orientation
for any d ≥ d∗.

By restricting the variables in the LP to integral values, we obtain
an ILP for the problem of finding the smallest integer d such that an
integral d-orientation exists.

Definition 3.6.3. Let G be a simple graph. The smallest integer d
such that a d-orientation G⃗ of G exists is called the orientation number
p(G), and G⃗ is an optimal orientation. The problem of determining an
optimal orientation is called the orientation problem.

We can now see that an optimal orientation can be found efficiently
despite the NP-completeness of ILPs (with only binary variables) in
general (Theorem 2.11.13).

Corollary 3.6.4. The orientation problem can be solved in O(|E|2 log p)
time.

Proof. Use an exponential search to obtain a 2-approximation of p,
followed by a binary search. In each test, construct the bipartite
network and find an integral maximum flow with the Ford–Fulkerson
algorithm. Since the maximum flow value is bounded by |E|, its
runtime is O(|E|2). We report a test to be successful if the maximum
flow value is exactly |E|. Correctness follows from Lemma 3.6.1.

Aichholzer et al. [AAR95] claim that a runtime of O(|E|3/2 log d∗)
is achieved with the Hopcroft–Karp algorithm [HK73] for bipartite
matching.5 They do not elaborate what is to be done in the analysis
about the arcs to the sink – in the straightforward reduction from the
bipartite matching problem to the maximum flow problem, all arcs
have unit capacity. We will address this issue in Chapter 5 for Dinitz’s
algorithm with the theory of AUC networks.

Venkateswaran [Ven04] shows that if variable d in the dual LP is
transformed into a constant, then the parameterized LP (with then
constant objective function) has a totally unimodular constraint matrix.
He also gives an example where the original matrix is not TU.

We give a simple alternative proof of total unimodularity based
on Lemma 2.11.10 and the relationship between the dual LP and the
bipartite network.

Proposition 3.6.5 ([Ven04]). If d is fixed to be a constant in the LP (3.17)-
(3.20), the constraint matrix is TU.

Proof. Note that if d is fixed as a constant, it appears on the right-
hand side of the LP, not in the constraint matrix. We will refer to
the constraints by their original counterparts. Consider the bipartite

5 The Hopcroft–Karp algorithm, which is generalized by Dinitz’s algorithm, runs in
time O(m√n) for n nodes and m arcs. Note that n = |E|+ |V| and m ∈ O(|E|) in
our bipartite network.

70 the densest subgraph problem

network (without s and t) as an undirected graph G′ with |V|+ |E|
vertices. Each edge node has two incident edges that correspond to
fuv,u and fuv,v. These |E| rows in the incidence matrix of G′ are exactly
the rows for Constraints (3.18).

Every vertex node v has an edge incident to it for every edge
incident to v in the original graph; this edge corresponds to fuv,v.
Thus, these |V| rows are exactly the rows for Constraints (3.17) with
the occurrence of d removed. By Lemma 2.11.10 this matrix is TU.

Proposition 3.6.5 and Theorem 2.11.11 imply the following corollary.

Corollary 3.6.6. For every integer d ≥ d∗, there is a (non-fractional) d-
orientation.

The orientation problem can alternatively be solved in polynomial
time by employing a binary search and a polynomial-time LP solver
that determines an optimal extreme point. Note that Corollary 3.6.6
also follows from the bipartite network for test value ⌈d∗⌉ by invoking
Theorem 2.12.10 on integral flows.

By exploiting the duality of the densest subgraph problem and the
smallest maximum fractional indegree problem, we obtain a simpler
proof than Venkateswaran for the following theorem.

Theorem 3.6.7 ([AAR95; Bez00; Ven04]). Let G = (V, E) be a simple
graph. Then the smallest maximum indegree p(G) equals ⌈d∗(G)⌉.

Proof. By Theorem 3.5.3 and observing that the dual LP describes
the fractional orientation problem, we have d∗ ≤ p. If we use ⌈d∗⌉
as a feasible test value, Corollary 3.6.6 shows that there is a ⌈d∗⌉-
orientation, i.e., p ≤ ⌈d∗⌉. Thus p = ⌈d∗⌉.

We will write ⌈d∗⌉ instead of p in the remainder of the thesis except
Chapters 8-10 that deal with pseudoforest partitions. There, we will
write p because it equals the pseudoarboricity.

Theorem 3.6.7 is independently proved by an application of Hall’s
theorem [Hal35] by Aichholzer et al. [AAR95] and by induction and
path reversals by Bezáková [Bez00]. We will see another proof of
Theorem 3.6.7 based on matroid theory in Chapter 8. As Kowalik
[Kow06] notes, the following theorem can also be employed. It was
proved independently by Hakimi [Hak65] and Frank and Gyárfás
[FG78]. We present the proof by the latter, which is simpler and can
be easily turned into an efficient algorithm.

Theorem 3.6.8 ([Hak65; FG78]). Let G = (V, E) be a simple graph and
b : V → Z. G has an orientation G⃗ with indegG⃗(v) ≤ b(v) for all v ∈ V
if and only if

|E[S]| ≤ ∑
v∈S

b(v) ∀S ⊆ V. (3.22)

3.6 the bipartite orientation network 71

Proof. ‘⇒’: Let G⃗ be an orientation with indegG⃗(v) ≤ b(v) for all
v ∈ V. Clearly,

|E[S]| ≤ ∑
v∈S

indegG⃗(v) ≤ ∑
v∈S

b(v).

‘⇐’: Let G⃗ denote an arbitrary orientation of G. Let V∗ be the set
of vertices v ∈ V with indegG⃗(v) > b(v). Define the quality of an
orientation G⃗ to be

q(G⃗) := ∑
v∈V∗

indegG⃗(v)− b(v).

We now prove that if (3.22) holds, then we can either modify G⃗ such
that q(G⃗) = 0, which proves the claim, or find a set S that violates
(3.22), which constitutes a contradiction.

Unless q(G⃗) = 0, let u ∈ V be a vertex with indegG⃗(u) > b(u), and
let S be the set of all vertices that can be reached from u in the opposite
direction of the edges. (For example, if u← v← w, then v, w ∈ S.)

If there is a vertex v ∈ S with indegG⃗(v) < b(v), reverse the path
from v to u. This improves the quality measure q by one as all vertices
on the path except u and v do not change their indegree, u does not
enter V∗, and v’s indegree drops by one.

If no such vertex exists, then indegG⃗(v) ≥ b(v) for every v ∈ S. As
no edge enters S, we have

|E[S]| = ∑
v∈S

indegG⃗(v) > ∑
v∈S

b(v).

This contradicts (3.22). By applying the argument repeatedly, we can
reduce q to zero or arrive at a contradiction.

Note that the theorem is quite general because it allows different
indegree bounds for the vertices. We can compute such an orientation
if it exists by altering the sink arc capacities in the bipartite network
to the function b. We can do the same for a function b : V → R

and fractional orientations. It stands to reason that the theorem also
holds in this case. However, the above proof does not work because
the improvement of the quality measure could be arbitrarily small
and thus q may never reach zero. Recall from Section 2.12.4 that the
Ford–Fulkerson algorithm suffers from the same problem for irrational
capacities. We shall not pursue the matter further. Let us instead give
an alternative proof of Theorem 3.6.7.

Alternative proof of Theorem 3.6.7. Set b(v) = ⌈d∗⌉ for every v ∈ V. For
nonempty S ⊆ V, we can rewrite (3.22) equivalently as

d(G[S]) =
|E[S]|
|S| ≤ ⌈d

∗⌉ .

72 the densest subgraph problem

This is true by the definition of the maximum density. By Theo-
rem 3.6.8, an orientation G⃗ with indegG⃗(v) ≤ ⌈d∗⌉ for all v ∈ V
exists.

To see that this upper bound is the smallest possible, set b(v) =

⌈d∗⌉ − 1 < d∗ to arrive at a contradiction by considering the densest
subgraph and (3.22).

The proof of Theorem 3.6.8 inspires how ⌈d∗⌉ can be found algorith-
mically without knowledge of maximum flow algorithms. We will call
this the path reversal algorithm, which was described independently by
Venkateswaran [Ven04] and Asahiro et al. [Asa+07]. Further properties
of this algorithm were examined by Borradaile et al. [Bor+17].

Starting from an arbitrary orientation, take a vertex u with maxi-
mum indegree dmax and search for path u ← · · · ← v to a vertex v
with indegree at most dmax − 2. Reverse the path. The indegree of u
and v is then at most dmax − 1, and the indegrees of the remaining
vertices on the path do not change. Repeat this step (updating dmax

when necessary) until no such reversible path can be found. Reversible
paths can be interpreted as augmenting paths in a flow network. Frank
and Gyárfás [FG78] already mentioned that network flow theory can
be applied, but did not elaborate.

Bezáková [Bez00] describes a similar algorithm that starts with a
lower bound to ⌈d∗⌉ (e.g., zero) and all edges unoriented. In order
to orient an unoriented edge uv, first arbitrarily orient it to v. If the
lower bound becomes violated thereby, search for a reversible path
from v as described, and reverse it. If no such path exists, the lower
bound is raised by one. Once all edges have been oriented, the lower
bound is reported as ⌈d∗⌉.

Theorem 3.6.9 ([Bez00; Ven04; Asa+07]). The orientation problem can be
solved in time O(|E|2) with algorithms based on path reversals.

We note that the runtime analysis of Bezáková’s algorithm is par-
ticularly easy, as |E| edges are oriented, and searches for reversible
paths take O(|E|) with BFS.

A trivial analysis of the path-reversal algorithm starting with an
arbitrary orientation yields a runtime bound of O(|V|2|E|): The max-
imum indegree can be reduced at most |V| times, there are at most
|V| vertices with current maximum indegree, and reducing the max-
imum indegree of a vertex is possible in O(|E|). Instead of proving
the O(|E|2) runtime as in [Ven04; Asa+07], we note the following
interesting application of a constant-factor approximation: If one uses
a 2-approximating orientation as the initial orientation, the maximum
indegree can drop only O(

√︁
|E|) times by Lemma 3.2.2. In this way

the runtime can be analyzed to be O(|V||E|3/2).
It is possible to use a flow algorithm for finding reversible paths from

all vertices with maximum indegree at the same time, which leads
to an algorithm with runtime O(|E|min(

√︁
|E|, |V|2/3)

√︁
|E|) using

3.7 streaming algorithms 73

Dinitz’s algorithm when starting from a 2-approximating orientation.
The flow can be interpreted as an ‘overlay of reversed paths’, i.e., an
edge may be flipped several times by different paths. A similar, but
better approach based on binary search will be given in the following
chapter, therefore we do not delve into the details here.

3.7 streaming algorithms

A graph stream is a graph that may be subject to change, typically by
single edge insertions and deletions. If both are allowed, the problem
of maintaining a solution under these changes is called fully dynamic.
We give a succinct literature review here.

Bahmani et al. [BKV12] show how a (2 + ϵ)-approximation to the
densest subgraph can be found in O(log |V|ϵ−1) passes and O(|V|)
space. They also address the case of directed graphs and test a
MapReduce implementation.

Bhattacharya et al. [Bha+15a; Bha+15b] show how to maintain a
(4 + ϵ)-approximating subgraph with high probability in the fully
dynamic setting in Õ(1) amortized time, while queries take Õ(1) time.
It uses Õ(|V|) space. An approximation factor of (2+ ϵ) can be traded
for a query time of Õ(|V|).

Epasto et al. [ELS15] present a fully dynamic algorithm that main-
tains a (2 + ϵ)-approximating subgraph whose amortized runtimes
are Õ(ϵ−2) for insertion and Õ(ϵ−4) for deletion with high probability.
It requires O(|V|+ |E|) space.

McGregor et al. [McG+15b; McG+15a] present a single-pass al-
gorithm that returns a (1 + ϵ)-approximating subgraph with high
probability. An update takes Õ(1) time, and it needs Õ(|V|ϵ−2) space.
The desired subgraph is constructed with a polynomial-time algorithm
such as Goldberg’s.

Angel et al. [Ang+14] address the problem of changing edge weights.
Das Sarma et al. show how to maintain a densest subgraph under a
certain condition [Das+12].

4
T H E O R I E N TAT I O N P R O B L E M

4.1 the re-orientation algorithm

In the previous chapter, we saw that the dual (3.16)-(3.20) of the LP
for the densest subgraph problem is the relaxation of the smallest
maximum indegree orientation problem, and that it can be solved in
polynomial time by performing a binary search and solving a bipartite
flow problem.

There is yet another flow network defined on the original graph
that has several advantages. We call the algorithm that uses it the re-
orientation algorithm. It has been described independently by Bezáková
[Bez00], Kowalik [Kow06], and Asahiro et al. [Asa+07].

Unlike the bipartite network, where an orientation is computed
‘from scratch’ (the edges are not oriented initially), we start with an
arbitrary orientation G⃗ of the graph. For some test value d, we try
to re-orient G⃗ such that every vertex has at most d ingoing edges
(Figure 4.1 on the next page). In order to do so, we add a source with
arcs to every vertex that has more than d ingoing edges: this vertex
has to flip at least indegG⃗(v) − d ingoing edges (more, if outgoing
edges flip are flipped well) to lower its indegree to d. Likewise, we
add a sink with arcs from every vertex whose indegree is less than d.
The indegrees of these vertices may rise up to d by flipping edges.

Definition 4.1.1. For an orientation G⃗ = (V, E⃗) of a simple graph
G = (V, E) and d ≥ 0, the re-orientation network (V ∪̇ {s, t}, A, c) is
given as follows:

(u, v) ∈ A : c(u, v) := 1 ⇔ u← v in G⃗,

(s, v) ∈ A : c(s, v) := indegG⃗(v)− d⇔ indegG⃗(v) ≥ d,

(v, t) ∈ A : c(v, t) := d− indegG⃗(v)⇔ indegG⃗(v) < d.

Recall Theorem 2.12.10: If the capacities are all integral, which is
the case if d is an integer, there is an integral maximum flow. Let us
run an algorithm that determines an integral maximum flow. A flow
of 1 through an arc other than the source and sink arcs means that
the corresponding edge should be reversed, while a flow of 0 means
it should point in the original direction of G⃗. In the relaxation of the
orientation problem, we have fractional test values d, and the (possibly
non-integral) flow determines a fractional re-orientation.1

1 Here we could also start from an initial fractional orientation G⃗ f . It appears that this
provides no advantage.

75

76 the orientation problem

A B

C D

(a)

A B

C D

(b)

A B

C D

ts t

1

2

1

1

1

1 1 1

1

(c)

A B

C D

s t

1

1

0

0

1

1 0 0

0

(d)

A B

C D

(e)

Figure 4.1: (a) A simple graph with ⌈d∗⌉ = 2. (b) A 3-orientation of the graph
that serves as an initial orientation here. (c) The re-orientation
network for the initial orientation and test parameter d = 2. (d)
An integral maximum flow that saturates all source arcs, which
means that the test for d = 2 is successful. (e) A 2-orientation that
is obtained by reversing the edges in the initial orientation whose
corresponding arcs carry nonzero flow (blue).

4.1 the re-orientation algorithm 77

A test is successful if all source arcs are saturated by the maximum
flow, i.e., every vertex whose indegree was greater than d could lower
it to at most d, and the indegrees of the other vertices did not rise to
more than d.

While this is quite intuitive, the fact that the test performed in this
way correctly answers the question whether a d-orientation exists was
proven rigorously and independently by Bezáková [Bez00], Kowalik
[Kow06], and Asahiro et al. [Asa+07]. The reader may want to rely on
intuition and skip the following two lemmata that use results from the
previous chapter for an alternative proof. We first show that a flow in
the re-orientation network can be converted into a flow in the bipartite
network.

Lemma 4.1.2. Let G⃗ be an orientation. Consider the re-orientation network
for G⃗ and a (possibly non-integral) test value d ≥ 0. Let

R := c({s}, V ∪ {t}) = ∑
v∈V

indegG⃗(v)>d

(indegG⃗(v)− d)

denote the total indegree to be re-oriented away.
For 0 ≤ x ≤ R, a flow f of value R− x in the re-orientation network can

be converted into a flow f̃ of value |E| − x in the bipartite network for test
value d in linear time. Moreover, if f and d are integral, so is f̃ .

Proof. We denote the orientation of each edge in G⃗ by fuv,u, fuv,v ∈
{0, 1}, which sum to one. Let R and x be defined as above.

Consider the (possibly fractional) orientation G⃗′ that arises when
a edges (u, v) ∈ E⃗ are re-oriented according to f : Set f ′uv,v = fuv,v −
f (v, u), and set f ′uv,u = fuv,u + f (v, u). Clearly f ′uv,v + f ′uv,u = 1.

Let in(v) := ∑uv fuv,v. Note that if f is integral, so are all the values
f ′uv,v because we started from a non-fractional orientation.

For a vertex v ∈ V, define the deficiency

def(v) :=

⎧⎨⎩(indegG⃗(v)− d)− f (s, v), if indegG⃗(v) > d,

0, otherwise.
(4.1)

Intuitively speaking, this is the amount of indegree that f fails to re-
orient at v in order to lower the indegree to d. Note that the deficiencies
sum to x. By flow conservation, for a vertex v with indegG⃗(v) > d
(and thus f (v, t) = 0) we have

def(v) = indegG⃗(v)− d− (f (v, V)− f (V, v))

= indegG⃗′(v)− d. (4.2)

We now modify f ′ in order to obtain the desired flow f̃ in the bipartite
network. For each v ∈ V with indegG⃗(v) > d, subtract a total of def(v)

78 the orientation problem

from the values f ′uv,v such that they stay nonnegative in an arbitrary
fashion, this is feasible because

∑
uv∈E

f ′uv,v = indegG⃗′(v)
(4.2)
= def(v) + d (4.3)

≥ def(v).

If f and therefore the orientation f ′ are integral, we should only
subtract zero or one for each edge in order to maintain integer values.
The other values f ′uv,v are adopted without change. Call the modified
values f̃uv,u, f̃uv,v. Note that f̃ defines a (fractional) orientation only
if f̃uv,v + f̃uv,u = 1 for all uv ∈ E. We show that (f̃u, f̃v) extends to a
feasible flow f̃ with f̃ (u, v) = f̃uv,v in the bipartite network. We set
the flow from the source to a node for edge uv to f̃uv,v + f̃uv,u ≤ 1, this
ensures flow conservation in this node and a flow value of |E| − x.
The flow on each sink arc (v, t) is set to

f̃ (v, t) = ∑
uv∈E

f̃uv,v.

For a vertex v with indegG⃗(v) > d we have

f̃ (v, t) = ∑
uv∈E

f ′uv,v − def(v)
(4.3)
= d.

For the other vertices, define the opportunity

opp(v) :=

⎧⎨⎩(d− indegG⃗(v))− f (v, t), if d > indegG⃗(v),

0, otherwise,

which is, intuitively speaking, the amount of indegree that v could
still take. For each v ∈ V with d > indegG⃗(v) we have by flow
convervation

opp(v) = (d− indegG⃗(v))− (f (V, v)− f (v, V)) (4.4)

and therefore

f̃ (v, t) = ∑
uv∈E

f ′uv,v = ∑
uv∈E

fuv,v + f (V, v)− f (v, V)

= indegG⃗(v) + f (V, v)− f (v, V)

(4.4)
= d− opp(v)

≤ d.

Therefore, the flow f̃ is feasible for test value d. If the flow f is integral,
so is f̃ .

It is not surprising that we can perform the conversion in the oppo-
site direction.

4.1 the re-orientation algorithm 79

Lemma 4.1.3. A flow (fu, fv) of value |E| − x in the bipartite flow network
for test value d ≥ 0 can be converted into a flow f of value R − x in the
re-orientation network for test value d in linear time, where R is defined as
in Lemma 4.1.2. If (fu, fv) and d are integral, so is f .

The proof is similar to Lemma 4.1.2 and omitted. Although we
already know the runtimes in the following theorem for finding ⌈d∗⌉
via Goldberg’s method (Theorem 3.4.2), we can now determine an
optimal orientation simultaneously. Bezáková [Bez00] and Asahiro
et al. [Asa+07] only show the runtime of O(|E|3/2 log d∗) on the re-
orientation network with Dinitz’s algorithm.

Theorem 4.1.4. A smallest maximum indegree orientation can be computed
with the re-orientation network in time

O
(︃
|E|min

(︃√︂
|E|, |V|2/3

)︃
log d∗

)︃
with Dinitz’s algorithm, and in time

Õ
(︂
|E|10/7 log d∗

)︂
= Õ

(︂
|E|10/7

)︂
with Mảdry’s algorithm, and in time

Õ
(︃
|E|
√︂
|V| log d∗

)︃
= Õ

(︃
|E|
√︂
|V|
)︃

with the Lee–Sidford algorithm.

Proof. Lemma 4.1.2 and Lemma 4.1.3 show in conjunction with the
bipartite network that a maximum flow saturates all source arcs if
and only if d ≥ d∗. Hence, a test for a d-orientation can be made
by computing the maximum flow in the re-orientation network for
test value d. The runtime analysis is analogous2 to the proof of
Theorem 3.4.2.

While binary-search-based approaches seem to be the fastest one
could come up with, we will see in Chapters 5 and 6 that even the
logarithmic factor incurred by the binary search can be successfully
attacked for Dinitz’s algorithm.

We will next show that if d ≥ d∗, a maximum flow in the bipartite
network can be converted into a maximum flow in Goldberg’s network,
and vice versa.

Lemma 4.1.5. A maximum flow in the bipartite network for a test value
d ≥ d∗ can be converted into a maximum flow f in Goldberg’s network for
test value d in linear time. If f is integral, so is the constructed flow.

2 In fact, it is slightly easier, because there are no vertices with both a source and a sink
arc. Therefore, a variant of Proposition 2.14.3 without Lemma 2.14.2 would suffice.

80 the orientation problem

Proof. Let (fu, fv) denote the maximum flow in the bipartite network
as before. Define in(v) := ∑uv fuv,v, which is at most d for every v ∈ V,
and out(v) = ∑uv fuv,u. Note that since d ≥ d∗, the flow value is |E|
and we have in(v) + out(v) = deg(v). We set the flow in Goldberg’s
network to be

f (u, v) = fuv,v, uv ∈ E,

f (v, u) = fuv,u, uv ∈ E,

f (s, v) = |E|, v ∈ V,

f (v, t) = |E|+ 2 in(v)− deg(v), v ∈ V.

We first show that the flow is feasible. The sink arc capacity constraints
are fulfilled because we have in(v) ≤ d:

f (v, t) = |E|+ 2 in(v)− deg(v)

≤ |E|+ 2d− deg(v)

= c(v, t).

All other capacity constraints are trivially satisfied.
Every vertex v receives in(v) from its neighbors and sends out(v) to

its neighbors. Furthermore, it receives |E| from the source and sends
|E| + 2 in(v) − deg(v) to the sink. Flow conservation is fulfilled in
every vertex v since

|E|+ in(v) = |E|+ in(v)− (deg(v)− in(v)− out(v))

= out(v) + (|E|+ 2 in(v)− deg(v)).

Thus the flow f is feasible and its value is |V||E|, so it is maximum.
Clearly f is integral if (fu, fv) is.

The opposite direction is a little harder to show, because the flow
values f (u, v) + f (v, u) in Goldberg’s network need not sum to one.

Lemma 4.1.6. A maximum flow in Goldberg’s network for test value d ≥ d∗

can be converted into a maximum flow in the bipartite network for test value
d in linear time.

Proof. Consider a maximum flow f in Goldberg’s network for test
value d ≥ d∗. We will first modify f while maintaining feasibility and
maximality. For uv ∈ E, consider the sum s(uv) = f (u, v) + f (v, u).
If s(uv) = 1, we do not alter the flow values. If s(uv) < 1, then
we increase both f (u, v) and f (v, u) by (1− s(uv))/2. Clearly, this
increases the sum to exactly one and does not affect flow conservation
in u and v. It also does not violate capacity constraints because

1− f (u, v)− f (v, u)
2

≤ 1− f (u, v)− f (v, u)

≤ 1−max(f (u, v), f (v, u)).

4.2 kowalik’s approximation scheme 81

If s(uv) > 1, we decrease both f (u, v) and f (v, u) by (s(uv)− 1)/2.
Again, the sum becomes one and flow conservation remains fulfilled.
The flow values stay nonnegative because

f (u, v) + f (v, u)− 1
2

≤ f (u, v) + f (v, u)− 1 ≤ min(f (u, v), f (v, u)).

Let in(v) = ∑(u,v) f ′(u, v) and out(v) = ∑(u,v) f ′(v, u) with in(v) +
out(v) = deg(v). We now set f ′uv,v = f ′(u, v) and f ′uv,u = f ′(v, u) in
the bipartite network, both being in the interval [0, 1] and satisfying
f ′uv,u + f ′uv,v = 1. It remains to show that in(v) ≤ d. The amount of
flow that enters a vertex v in f ′ is |E|+ in(v), the amount that leaves
the vertex is at most out(v) + |E|+ 2d− deg(v). Therefore, for every
v ∈ V,

|E|+ in(v) ≤ out(v) + |E|+ 2d− deg(v)

= (deg(v)− in(v)) + |E|+ 2d− deg(v)

= |E|+ 2d− in(v).

By rearranging and dividing by two, we obtain the desired

∑
uv∈E

f ′uv,v = in(v) ≤ d.

Unfortunately, extending the proofs to non-maximal flows and to
the case d < d∗ seems difficult.

The re-orientation network has an advantage over the bipartite
network (at least on the surface), as we shall see in the next section.

4.2 kowalik’s approximation scheme

Kowalik [Kow06] uses the re-orientation network to obtain an approx-
imation scheme for the smallest maximum indegree problem. We
will use this approximation scheme for new results in Chapter 6 and
Chapters 9 and 10.

A rough overview of the algorithm is as follows: Perform the
re-orientation algorithm from the previous chapter using Dinitz’s
algorithm in a binary search with integral test values. However, if only
a (1 + ϵ)-approximation is required, we can stop Dinitz’s algorithm
afterO(log1+ϵ |V|) phases. The usage of Dinitz’s algorithm is essential,
as we shall see.

In order to show this, Kowalik proves the following lemma [Kow06],
which is a variant of a lemma by Brodal and Fagerberg [BF99, Lemma
2]. However, in its stated form, we found that it is not sufficient for
its purposes3, and this mistake was copied to a generalized version in
[Blu16].

3 This was confirmed by Łukasz Kowalik, personal communication, September 2016.

82 the orientation problem

Lemma 4.2.1 ([Kow06, Lemma 2]). Let G⃗ be a d-orientation of a graph
G, and let d > d∗. Then for every vertex v, there is a path v ← · · · ← u
of length at most logd/d∗ |V| in G⃗ from a vertex u whose indegree is smaller
than d.

An arbitrary orientation is used in each test of the re-orientation
algorithm. However, the lemma only makes a statement about test-
ing for d when a d-orientation is already given, which is pointless.4

Dropping the requirement of a d-orientation does not render the proof
in [Kow06] invalid, only the word ‘exactly’ must be replaced with ‘at
least’. The required lemma is as follows.

Lemma 4.2.2. Let G⃗ be an arbitrary orientation of a graph G, and let d >

d∗. Then for every vertex v, there is a path v ← · · · ← u of length at most
logd/d∗ |V| in G⃗ from a vertex u whose indegree is smaller than d.

We defer the proof to Section 6.1, where we will prove a generaliza-
tion to fractional orientations. Let us accept Lemma 4.2.2 as given for
the moment.

We now review Kowalik’s algorithm and its analysis (Algorithm 4.1
on the facing page) in detail. We note that the binary search in
the original [Kow06, Algorithm 4.2] is broken. (The reader may
want to skip to Theorem 4.2.3 and assume the binary search works
correctly.) Kowalik’s search maintains a lower bound l and an (initially
feasible) upper bound u, the test value is chosen as t = ⌈(l + u)/2⌉.
If the test is successful, the upper bound is set to t. If for example
l = 2, u = 3, this means that the next test value is three, and since this
is feasible, an infinite loop is entered. Thus in the case of success, an
update u← u− 1 should be performed. The minimum feasible value
encountered so far can be stored separately. Now, however, we may
not stop when l = u, as this value may not have been tested, even if
we update l ← t + 1 upon every failure. We should only stop once
l > u. Alternatively, one can use the test value t = ⌊(l + u)/2⌋, keep
the upper bound feasible by setting u = t upon success, and update
l ← t + 1 in the case of failure. We will use this latter binary search in
Section 7.3.

Theorem 4.2.3 ([Kow06]). Given ϵ > 0, an orientation with a maximum
indegree of at most ⌈(1 + ϵ)d∗⌉ can be found in time

O(|E| log |V|ϵ−1 log d∗).

Proof. Obtain a 2-approximating upper bound by exponential search,
this needs O(log d∗) tests. Alternatively, we can use a linear-time
2-approximation algorithm (see Chapter 7).

4 One might wonder if using a good initial orientation might yield some advantage.
Although using a 2-approximating orientation in an algorithm in Section 3.6 was
useful, we do not find this to be the case for the re-orientation algorithm.

4.2 kowalik’s approximation scheme 83

Algorithm 4.1: Kowalik’s approximation scheme (with a cor-
rected binary search).

Input: A simple graph G = (V, E), an arbitrary orientation G⃗ of
G, and a parameter ϵ > 0.

Output: An integer d such that ⌈d∗⌉ ≤ d ≤ ⌈(1 + ϵ)d∗⌉.
function test(t, k):

Nt ← the re-orientation network for parameter t
/* Compute integral flow */

Run Dinitz’s algorithm on Nt for k phases
if all source arcs in Nt are saturated then

return true
return false

function approxKowalik(ϵ):
l = 0
u = 1
k = 2 + log1+ϵ |V| /* Pathlength bound */

/* Compute 2-approximation by exponential search */

while test(u, k) = false do
l = u + 1 /* asymptotically not necessary */

u← 2u
d = u /* minimum feasible found so far */

while l < u do
t =

⌊︂
u+l

2

⌋︂
if test(t, k) = true then

d = t
u← t

else
l ← t + 1

return d
/* The algorithm can be modified to return a

d-orientation */

84 the orientation problem

By Lemma 2.15.1, a blocking flow can be computed in time O(|E|).
By a Taylor expansion of log1+ϵ(x), the runtime of Algorithm 4.1 is
bounded by O(|E| log |V|ϵ−1 log d∗). We now prove its correctness.

If d < d∗, the test will always (and correctly) return a failure.
If d∗ ≤ d < (1 + ϵ)d∗, the test may return a failure although d is

feasible because the flow algorithm is terminated early.
If d ≥ (1 + ϵ)d∗, then d/d∗ ≥ 1 + ϵ. Every residual network for

an integral flow corresponds to an orientation. By Lemma 4.2.2, if
there is an augmenting path in the residual network, then there is one
of length at most 2 + logd/d∗ |V|. By Lemma 2.13.1, the length of the
shortest augmenting path increases with every blocking flow phase.
Thus after 2 + log1+ϵ |V| phases, there can be no augmenting path,
and by Lemma 2.12.8 the flow is maximum.

If a test is successful, the corresponding d-orientation is obtained
by reversing the edges whose corresponding arcs carry a flow of
one. We can store the d-orientation for the smallest d that is reported
feasible in the binary search, and by the above analysis this d satisfies
⌈d∗⌉ ≤ d ≤ ⌈(1 + ϵ)d∗⌉.

Note that Kowalik’s scheme never stops the binary search early as
it does not detect when the error ϵ is undershot; it solely relies on the
stopping criterion derived from Lemma 4.2.2. Thus, if this criterion
is never met during the execution, Kowalik’s scheme is in fact the
re-orientation algorithm and outputs the optimum solution. We will,
however, additionally stop the binary search for fixed ϵ in Section 7.3.

While the output d approximates d∗, we do not know how to obtain
a subgraph of density at least d∗/(1 + ϵ) within the same runtime:
Goldberg’s network can be used to find such a subgraph with d/(1+ ϵ)

as the test value and a single maximum flow computation. However, in
the re-orientation network, terminating after 2+ log1+ϵ |V| phases may
prevent us from finding a maximum flow for test values below (1 +
ϵ)d∗. Even if we could convert a maximum flow in the re-orientation
network for d < d∗ into a maximum flow in Goldberg’s network for
the same test value (which we did not achieve in the previous section),
this would not help in finding a suitable subgraph.

However, the approximation scheme will help us in determining
⌈d∗⌉ faster in Chapter 6, which eliminates the binary search for finding
an ‘almost-densest subgraph’ of density greater ⌈d∗⌉ − 1.

4.3 applications and generalizations

If a graph is given as an adjacency matrix, the question whether
(u, v) ∈ E can be answered in constant time. However, the representa-
tion needs Θ(|V|2) bits. If we use adjacency lists, we can answer in
O(|V|) time by scanning u’s adjacency list, and O(log |V|) time with
a binary search if the adjacency lists are sorted. As we shall soon see,
all adjacency lists can be sorted in total linear time.

4.3 applications and generalizations 85

Forest partitions were used to represent graphs by Kannan et al.
[KNR92] and Arikati et al. [AMZ97]. Chrobak and Eppstein [CE91]
and Aichholzer et al. [AAR95] apply the integral orientation problem5

to the adjacency-list representation of a graph. These techniques can
speed up some graph algorithms.

Theorem 4.3.1 (Essentially [CE91; AAR95; AMZ97]). Let G = (V, E) be
a simple graph. Given a ⌈d∗⌉-orientation G⃗ of G, a data structure that uses
O(|E|) space and answers edge queries correctly in O(log d∗) time can be
constructed in O(|E|) time.

Proof. We first sort all adjacency lists of the simple graph G in O(|V|+
|E|). (We assume that V = {1, . . . , |V|}.) Create |V| linked lists
(buckets) and go through the adjacency lists in ascending order u =

1, . . . , |V|. For every v with (u, v) in u’s list, add u to bucket v. After
this has been done for all lists, bucket v contains a sorted adjacency
list of vertex v: Clearly, every neighbor of v is present, and the vertices
were inserted in ascending order.

Let G⃗ be a ⌈d∗⌉-orientation of G. We create a new adjacency list
representation of G: An edge uv is stored in the adjacency list of v if
u→ v in G⃗. Then, every adjacency list has length at most ⌈d∗⌉, which
is optimal. The E-membership of uv ∈ V ×V can be queried in time
O(log d∗) by performing a binary search on u’s list and, if it is not
present there, another search on v’s list.

Chrobak and Eppstein [CE91] show that a planar graph can be
3-oriented in time O(|V|). By Theorem 4.3.1, edge queries can then
be performed in constant time.

For general graphs, Eppstein [Epp94] and Aichholzer et al. [AAR95]
use a 2-approximation algorithm (Chapter 7) to obtain an orientation
in linear time that guarantees the same asymptotic bounds as The-
orem 4.3.1. Brodal and Fagerberg [BF99] consider a dynamic data
structure for supporting adjacency queries that uses orientations of
bounded indegree. They achieve O(d∗) time for an adjacency query.
Edge insertion is possible in constant amortized time, edge deletion
is possible in O(d∗ + log |V|) amortized time. A variant of this data
structure supports queries in O(log d∗) time, insertions in O(log d∗)
amortized time, and deletions in O(log |V|) amortized time. We will
apply this data structure in our arboricity approximation scheme in
Section 10.3.

For further applications of orientations and the equivalent pseudo-
forest partitions, see [Wes88; GW92; Kow06]. We can generalize the
orientation problem to edge-weighted graphs G = (V, E, w), and ask
to minimize the maximum weighted indegree. We list two results
showing that it is unlikely to be solvable in polynomial time as well.

5 We will see the equivalence to pseudoforest partitions and their relationship with
forest partitions in Chapter 8.

86 the orientation problem

Theorem 4.3.2 ([Asa+07]). Let G = (V, E, w) be a simple graph with
edge-weights w : E → N. The decision problem whether an orientation of
G exists whose maximum weighted indegree is at most k is NP-complete,
even for planar bipartite graphs.

The proof uses a reduction from the partition problem.

Theorem 4.3.3 ([Asa+07]). There is a 3/2-approximation algorithm for the
smallest maximum weighted indegree problem if the edge weights are from
the set {1, 2}, and this factor is optimal unless P=NP.

The proof of the latter uses a reduction from a variant of the 3-SAT
problem.

5
B A L A N C E D B I N A RY S E A R C H

Knuth points out that while the first binary search was published in 1946,
the first published binary search without bugs did not appear until 1962.

— Jon Bentley, Programming Pearls (1986)

In the following we will show that the runtime claim ofO(|E|3/2 log d∗)
by Aichholzer et al. [AAR95] for the bipartite network is correct
for Dinitz’s algorithm. Furthermore, we shall recast the Gabow–
Westermann algorithm, which is a matroid partitioning algorithm
(see Chapter 8) with runtime

O
(︃
|E|min

(︃√︂
|E| log d∗, (|V| log d∗)2/3

)︃)︃
in the language of flows entirely.

We first modify the bipartite flow network as follows. The only
arcs whose capacity exceeds one are those from the vertex nodes to
the sink, which have the test value d as their capacity. However, as
a node for vertex v ∈ V has degG(v) ingoing arcs, we can safely set
c(v, t) = min(d, degG(v)). By the degree sum formula, we now have
an AUC network with total sink and source arc capacities bounded by
3|E|.

Theorem 5.0.1 (sketch by [AAR95]). Let G = (V, E) be a simple graph.
A smallest maximum indegree orientation can be determined with Dinitz’s
algorithm on the bipartite network in time O(|E|3/2 log d∗).

Proof. While the number of nodes is |V|+ |E|, Theorem 2.15.4 nonethe-
less yields a runtime of O(|E|3/2) for testing a d-orientation when the
modified bipartite network is used. Note that the runtime is in fact
the same for the original bipartite network.

We perform the binary search for integral test values in the usual
way to obtain a total runtime of O(|E|3/2 log d∗).

By stopping the flow algorithm early, we can find an optimal orien-
tation for a restricted number of edges.

Lemma 5.0.2 (Re-phrased from [GW92]). Given ∆ ∈ N, it is possible
to determine a d-orientation for a subgraph of G with at least |E| − ∆ edges
satisfying d ≤ ⌈d∗(G)⌉ in time O(|E|2/∆ log d∗).

Proof. We use the modified bipartite flow network again. Let M denote
the maximum flow value and use Dinitz’s algorithm. Consider the
phase in which the flow value F reaches the value M − ∆. When

87

88 balanced binary search

this phase begins, we have F < M − ∆. The residual network Ñ
is an AUC-2 G-network with total source and sink arc capacities
Cs,t(Ñ) ≤ c|E| for a c > 0. By Lemma 2.12.9, its maximum flow is

M̃ = M− F > M− (M− ∆) = ∆.

Since the flow in the residual network is initially zero, by Lemma 2.15.3,
the length of the shortest augmenting path satisfies

l̃ ≤ 2|E|
M̃

+ 2 <
2|E|

∆
+ 2.

The number of phases until this point is thus at most 2|E|
∆ + 2, and the

runtime is O(|E|2/∆) by Proposition 2.15.1.
To obtain the algorithm, perform the usual binary search, and at

each test, run 2 + 2|E|/∆ phases of Dinitz’s algorithm. Find the
smallest integral test value d such that F ≥ |E| − ∆. For every test
value d ≥ ⌈d∗(G)⌉, we have M = |E|, hence a d ≤ ⌈d∗(G)⌉ will be
returned. The flow in this test can be interpreted as an orientation on a
subgraph with at least |E| −∆ edges: discard the edges corresponding
to edge nodes whose incoming arcs are not saturated. The remaining
edge nodes, along with their outgoing arcs, determine the partial
orientation.

Now we show that a partial orientation can be easily updated upon
an edge insertion.

Proposition 5.0.3. Let G = (V, E) and (VH, EH) = H ⊆ G, and let a
⌈d∗(G)⌉-orientation H⃗ of H be given. An edge e ∈ E \ EH can be inserted
into H⃗ such that it stays a ⌈d∗(G)⌉-orientation in time O(|E|).

Proof. Note that the maximum indegree in H⃗ may be smaller than
⌈d∗(G)⌉. Insert the edge e = uv into H and as u→ v into H⃗.

If the maximum indegree does not increase thereby, the claim holds.
Otherwise, v is the only vertex with the (new) maximum indegree. We
perform a single step of the path reversal algorithm in time O(|E|) (see
Section 3.6 from Theorem 3.6.8 onward). If the algorithm successfully
lowers the indegree by one, the modified orientation is optimal again.
Otherwise, there is no orientation with smaller indegree, hence it
already is optimal.

Now we balance the runtimes of the two algorithms, which gives rise
to the name balanced binary search. This technique was first described
for the bottleneck maximum cardinality matching problem by Gabow
and Tarjan [GT88a] (see Section 6.2). To the best of our knowledge,
this and the matroid partitioning problem are the only problems this
technique has been applied to.

We will set ∆ depending on d∗. As the latter is unknown, we will
use an approximation instead: For all claims, we initially compute a

balanced binary search 89

2-approximation dG in linear time with the greedy algorithm in Chap-
ter 7. The values dG and dG/2 will be used to set parameters. However,
we will suggestively call these values d∗ as this does not change the
runtime estimates asymptotically and simplifies the presentation. We
use ≃ to signify the constant factors when setting parameters. We
further assume that numeric computations are performed to arbitrary
precision, and d∗ > 1.

Theorem 5.0.4 (Re-phrased from [GW92]). An optimal orientation can
be found in time O(|E|3/2

√︁
log d∗).

Proof. Set

∆ ≃
⌈︃√︂
|E| log d∗

⌉︃
.

Use Lemma 5.0.2 to obtain a subgraph H with at least |E| − ∆ edges
and a ⌈d∗(G)⌉-orientation H⃗ of it in time O(|E|3/2

√︁
log d∗).

Insert each of the at most ∆ remaining edges optimally into H⃗
in linear time according to Proposition 5.0.3. In total, this takes
O(|E|3/2

√︁
log d∗) time.

Gabow and Westermann achieve the runtime O(|E|(|V| log d∗)2/3)

on the same bipartite network, although they do not call it a flow net-
work. However, they only sketch the argument and require reversing
the bipartite network for their analysis: They claim that starting from
the edges nodes uses too much time. In the following, we will use the
re-orientation network instead to achieve the desired runtime. This is
maybe a less intuitive approach – in contrast to the bipartite network,
there are no unassigned edges! However, as we saw in the previous
chapter, the two networks are equivalent.

Lemma 5.0.5 (Re-phrased from [GW92]). Given ∆ ∈ N, it is possible
to determine a d-orientation for a subgraph of G = (V, E) with at least
|E| − ∆ edges satisfying d ≤ ⌈d∗(G)⌉ in time O(|E||V|/

√
∆ log d∗).

Proof. We use the re-orientation network with an arbitrary initial (non-
fractional) orientation G⃗, and Dinitz’s algorithm. Let

R = c({s}, V ∪ {t}) = ∑
v∈V

indeg(v)>d

(indegG⃗(v)− d)

denote the total number of edges to be oriented away from vertices,
and let M denote the maximum flow value.

Consider the phase in which the flow value F reaches the value
M− ∆. When this phase begins, we have F < M− ∆. The residual
network Ñ is an AUC-2 G-network with total source and sink arc
capacities Cs,t(Ñ) ≤ c|E| for some c > 0. By Lemma 2.12.9, its
maximum flow is

M̃ = M− F > M− (M− ∆) = ∆.

90 balanced binary search

Since the flow in the residual network is initially zero, by Lemma 2.15.5,
the length of the shortest augmenting path satisfies

l̃ ≤ (2
√

2)|V|√
M̃

+ 1 <
(2
√

2)|V|√
∆

+ 1.

This is an upper bound on the number of phases until this point, and
the runtime is O(|E||V|/

√
∆) by Proposition 2.15.1.

To obtain the algorithm, perform the usual binary search, and at
each test, run 1 + 2

√
2|V|/

√
∆ phases of Dinitz’s algorithm. Find

the smallest test value d such that F ≥ R− ∆. For every test value
d ≥ ⌈d∗(G)⌉ we have M = R, hence a d ≤ ⌈d∗⌉ will be found.

In order to obtain the subgraph, look at the vertices whose source
arcs are not saturated (if any): Such a vertex v still has, after re-
orienting according to the integral flow, a deficiency def(v) := c(s, v)−
f (s, v) of arcs that remain to be re-oriented with respect to the indegree
goal d. We proceed similarly to Lemma 4.1.3: Arbitrarily pick def(v)
edges from the new orientation that are oriented towards v, and
remove them from the graph. If this is done for every v ∈ V, we are
left with a d-orientation of a subgraph that has at most ∆ edges less
than the original graph.

We can now again perform a balanced binary search.

Theorem 5.0.6 (Re-phrased from [GW92]). An optimal orientation can
be found in time O(|E|(|V| log d∗)2/3).

Proof. Compute a 2-approximation to estimate ⌈d∗⌉. Set

∆ ≃
⌈︂
(|V| log d∗)2/3

⌉︂
.

Use Lemma 5.0.5 to obtain a subgraph H with at least |E| − ∆ edges
and a ⌈d∗⌉-orientation H⃗ of it in time O(|E|(|V| log d∗)2/3).

Insert each of the at most ∆ remaining edges into H⃗ in linear time
according to Proposition 5.0.3. This takes time O(|E|(|V| log d∗)2/3)

in total.

Using Theorems 5.0.4 and 5.0.6, we can eliminate the binary search
in Goldberg’s method for integral test values and compute an ‘almost
densest’ subgraph with a single maximum flow computation.

Corollary 5.0.7. A subgraph of density greater than ⌈d∗⌉ − 1 can be found
in time

O
(︃
|E|min

(︃√︂
|E| log d∗, (|V| log d∗)2/3

)︃)︃
.

6
A C C E L E R AT E D B I N A RY S E A R C H

I was shocked to learn that the binary search program
that Bentley proved correct and subsequently tested in

Chapter 5 of Programming Pearls contains a bug. [. . .]
[L]et me tell you how I discovered the bug: The version of

binary search that I wrote for the JDK contained the same bug.
It was reported to Sun recently when it broke someone’s program,

after lying in wait for nine years or so.

— Joshua Bloch, Google Research Blog (2006)

In this chapter, we will improve upon the runtime of the Gabow–
Westermann algorithm unconditionally for the

√︁
|E|-branch, and more

strongly if certain asymptotic conditions are met for d∗. Analogous
conditional bounds can be proved for the |V|2/3-branch with our
technique. The only flow algorithm we employ is the one of Dinitz.
Conditional bounds can also be proved when Mảdry’s algorithm or
the Lee–Sidford algorithm are employed.

We introduce a new technique that we call accelerated binary search:
A (1 + ϵ)-approximation is obtained with an approximation scheme,
which is then used to bound the search interval more strongly for
the exact algorithm with Dinitz’s algorithm on the re-orientation net-
work. With this technique, we can obtain an algorithm with runtime
O(|E|3/2 log log d∗).

We can even combine this with the balanced binary search: We
obtain a smaller search interval and then use the Gabow–Westermann
algorithm. This allows for a runtime of O(|E|3/2

√︁
log log d∗). We call

this accelerated balanced binary search.
In certain cases, it is worth performing an iteratively accelerated binary

search. As Kowalik’s approximation scheme uses a binary search itself,
we can repeatedly approximate with ever smaller values of ϵ to make
the search interval smaller and smaller. The use of the balanced binary
search for the final interval does not yield any asymptotic benefit,
however.

Theorem 6.0.1. A smallest maximum indegree orientation can be computed
in the runtime bounds (I)-(III) stated in Table 6.1 on the next page with
Dinitz’s algorithm. Moreover, a subgraph of density greater ⌈d∗⌉ − 1 can be
found within the same runtimes.

Proof. We set ϵ using a constant-factor approximation. As in the
previous chapter, this will be indicated by the symbol ≃.

Consider claim (I) in Table 6.1. Check if d∗ ≤ |V|0.49. If this is the
case, see the proof of claim (III). Otherwise, set ϵ ≃ (log(d∗) log |V|)/d∗

91

92 accelerated binary search

Table 6.1: New runtime bounds for the orientation problem, depending on
d∗. Here, log∗ denotes the iterated logarithm to the base 2.

Bound for d∗ Runtime

Ω
(︂√︁
|E|
)︂

O
(︁
|E|3/2)︁ Chapter 11

− O
(︁
|E|3/2

√︁
log log d∗

)︁
(I)

O
(︃ √

|E|
log |V|

)︃
O
(︁
|E|3/2 log∗ d∗

)︁
(II)

O
(︃ √

|E|
log2 |V|

)︃
O
(︁
|E|3/2)︁ (III)

and thus the first phase runs in O(|E|d∗) time. By Proposition 3.2.2,
d∗ ∈ O(

√︁
|E|) and hence this runtime can be bounded as O(|E|3/2).

A binary search on the shrunk search interval now needs

O(log(ϵd∗)) ⊆ O(log log d∗)

tests by Lemma 3.4.1. The re-orientation algorithm (or Goldberg’s or
the bipartite network algorithm) can thus perform the second phase
in time O(|E|3/2 log log d∗). The Gabow–Westermann algorithm can
perform the second phase in O(|E|3/2

√︁
log log d∗) time by changing

the parameter for the balanced binary search to ∆ ≃
√︁
|E| log log d∗

in the proof of Theorem 5.0.4.
For claim (II), assume that d∗ ∈ O(

√︁
|E|/ log |V|). We run the

approximation scheme in i = 1, . . . , log∗ d∗ − 1 phases1, each time on
the search interval left after the previous phase, with parameters

ϵ1 ≃
log d∗

d∗
, ϵ2 ≃

log log d∗

d∗
, ϵ3 ≃

log log log d∗

d∗
, . . .

Recall the functional iteration defined in Section 2.3. We prove
inductively that for the interval Ii leftover after phase i, we have
|Ii| ∈ O(log(i) d∗) and thus phase i runs in O(|E|3/2) time. The
induction basis holds as for the initial search interval I0, we have
|I0| ∈ O(d∗) with the 2-approximation.

Let the induction hypothesis hold for i− 1. In phase i, we perform
Kowalik’s scheme on Ii−1 with ϵi in time

O
(︄
|E| log |V| d∗

log(i) d∗
log log(i−1) d∗

)︄
.

Thus the phase runs in O(|E|3/2) time and leaves an interval of size
|Ii| ∈ O(log |Ii−1|) = O(log(i) d∗) by Lemma 3.4.1. However, one
might fear that the hidden constants accumulate during the iterated

1 Recall that log∗ denotes the iterated logarithm to the base two.

6.1 fractional orientations 93

process. In the proof of Lemma 3.4.1, we saw that a multiplicative
constant of two and an additive constant of two may be introduced
when shrinking the interval. We can divide ϵi by a constant c > 2 to
avoid accumulating ever larger constants.

After log∗ d∗ − 1 phases, we have shrunk the search interval to a
size of O(log(log∗ d∗) d∗) = O(1). The final phase consists of a constant
number of tests and runs inO(|E|3/2) time with, e.g., the re-orientation
algorithm. Thus claim (II) is proven.

For claim (III), assume that d∗ ∈ O(
√︁
|E|/(log |V|)2). Set ϵ ≃ 1/d∗.

The first phase clearly runs in timeO(|E|3/2). As we get a d-orientation
with ⌈d∗⌉ ≤ d ≤ ⌈d∗ + 1⌉ = ⌈d∗⌉ + 1, the second phase consists
of a single re-orientation test with Dinitz’s algorithm, which takes
O(|E|3/2).

A subgraph of density greater ⌈d∗⌉ − 1 can be found with a single
maximum flow computation on Goldberg’s network for test parameter
⌈d∗⌉ − 1 in O(|E|3/2) time, see Subsection 3.3.3.

Similarly, we can speed up the binary search for the flow algorithms
of Mảdry and Lee and Sidford when d∗ is appropriately bounded.
However, we are not able to obtain a new unconditional bound as in
the case of Dinitz’s algorithm.

We can also obtain a near-exact algorithm for the orientation prob-
lem whose runtime scales in d∗ using the iterated accelerated binary
search. The proof is analogous.

Theorem 6.0.2. A (⌈d∗⌉+ 1)-orientation can be computed within a run-
time of O(|E| log |V| d∗ log∗ d∗).

We conclude this section by asking whether the graph compres-
sion technique of Feder and Motwani, which they applied to the
bipartite matching problem with Dinitz’s algorithm [FM95] (see also
Section 6.2), can be used for our purposes.

6.1 fractional orientations

We now give a generalization of Lemma 4.2.2 to fractional orientations.

Lemma 6.1.1. Consider an arbitrary fractional orientation G⃗ f of a graph G
and d > d∗(G). Then for every vertex v, there is a path v ← f · · · ← f u of
length at most logd/d∗ |V| in G⃗ f from a vertex u whose indegree is smaller
than d, where y← f x if fxy,y > 0 in G⃗ f .

The condition fxy,y > 0 is important because in this case, we can
send a flow value greater zero from y to x when re-orienting with
augmenting-path algorithms.

Proof. Let v be an arbitrary vertex. Let k denote the minimum unit
distance in G⃗ f with respect to← f as defined above from v to a vertex
whose fractional indegree is smaller than d.

94 accelerated binary search

Let |Vi| denote the set of vertices which are at distance i at most
from v. We show by induction that |Vi| ≥ (d

d∗)
i for i = 0, . . . , k. The

claim holds for i = 0. Assume the induction hypothesis holds for
some i < k. Let Ei+1 denote the set of edges where both ends are in
Vi+1.

Every vertex in Vi has a fractional indegree of at least d (otherwise
i ≥ k, which contradicts the assumption). Thus

|Ei+1| = ∑
uw∈Ei+1

(fuw,u + fuw,w)

≥ ∑
u∈Vi

∑
uw∈E

fuw,u>0

fuw,u = ∑
u∈Vi

∑
uw∈E

fuw,u ≥ d|Vi|.

Since |Ei+1|/|Vi+1| ≤ d∗, we obtain |Vi+1| ≥ d
d∗ |Vi|. By applying the

induction hypothesis, the claim is shown for all i = 0, . . . , k.
Because |Vk| ≤ |V|, we have (d

d∗)
k ≤ |V|, which concludes the

proof.

Unfortunately, runtime analyses of flow algorithms such as Dinitz’s
often require integer capacities. For rational test values d for d∗, we
can scale the capacities to be integers and apply an algorithm tailored
for integral capacities. The Goldberg–Rao method (Section 2.12.4)
generalizes ideas of Dinitz’s algorithm, and Lemma 6.1.1 might be
applied similarly. However, we do not think that this application
improves the runtime asymptotically because Goldberg’s binary search
for rational test values (see Lemma 3.3.3 and thereafter) stops once the
search interval size is less than 1/(|V|(|V| − 1)), i.e., there are Ω(|V|2)
potential test values between two integers. One would have to set a
much smaller ϵ in order to accelerate the binary search considerably.
Even Ω(|V|) tests between two integers would be prohibitively large.

However, the stopping criterion of Goldberg’s binary search is rather
conservative. One may wonder whether the following three points
allow for an improvement.

1. The densest subgraph is always an induced subgraph. Thus,
several fractions are not candidates, for example 2/3 in the
complete graph K3.

2. We can restrict the discussion to connected subgraphs because
the densest subgraph is attained on a connected subgraph (Propo-
sition 3.1.4).

3. Several densities may coincide (e.g., 12/6 = 10/5 in Figure 3.1
on page 50).

Let us consider a star of n vertices. The set of all densities of induced
connected subgraphs is {0/1, 1/2, 2/3, . . . , (n− 1)/n} ⊆ [0, 1) with
cardinality n. On the other hand, the complete graph Kn on n vertices
has the connected induced subgraphs K1, . . . , Kn (all having different

6.2 bottleneck maximum cardinality matching 95

densities). Since d∗ = (n − 1)/2, this is not Ω(n) values between
any two integers. (If we drop the connectivity requirement, we can
combine several vertex-disjoint subgraphs to obtain more distinct
densities.)

We note that coprimality among pairs of integers is not rare, and
hence the third bullet point may have an insignificant effect. The
following is a well-known result from number theory.

Lemma 6.1.2 (e.g., [HW08]). Let n ∈N, and let integers 1 ≤ x, y ≤ n be
chosen uniformly at random, independently of each other. Then

Pr[x and y are coprime] n→∞−→ 6
π2 ≈ 0.608.

6.2 bottleneck maximum cardinality matching

In this section, we give a short note on the bottleneck maximum
cardinality matching. Gabow and Tarjan [GT88a] applied a balanced
binary search to this problem for a runtime of O(|E|

√︁
|V| log |V|).

Can accelerated binary search be applied here as well?
A maximum cardinality matching can be computed in O(|E|

√︁
|V|)

time [MV80; GT91]. This was the best runtime available to Gabow and
Tarjan in 1988. It was first achieved for the case of bipartite graphs
by Hopcroft and Karp [HK73] (see also [Kar73; ET75]). Later, the
algorithm of Alt et al. [Alt+91] achieved O(|V|3/2

√︁
|E|/ log |V|) in

the bipartite case, which is superior if |E| ∈ Ω(|V|2/ log |V|).
Today, the best known runtime in general is O(|E|

√︁
|V| log(|V|2/|E|)

log |V|)

[GK04] (after [FM95; GK97] for the bipartite case). Mảdry’s algorithm
achieves a better bound of Õ(|E|10/7) in sparse bipartite graphs.2

In the bottleneck maximum cardinality matching problem, each
edge e ∈ E has a weight w(e). The goal is to find a maximum
cardinality matching where the maximum edge weight is minimized.
Gabow and Tarjan [GT88a] first show the obvious way of computing
it: One can order the edges as e1, . . . , e|E| with

w(e1) ≤ w(e2) ≤ · · · ≤ w(e|E|)

in time O(|E| log |V|). Let Ei = {ej | j ≤ i}. First a maximum
cardinality matching M∗ on (V, E) is computed in timeO(|E|

√︁
|V|) so

we can test against its size |M∗|. For i ∈ {1, . . . , |E|} we can determine
a maximum cardinality matching of (V, Ei) in time O(|E|

√︁
|V|). If

it has size |M∗|, it is a candidate solution, otherwise it cannot be a
bottleneck maximum cardinality matching. By performing a binary
search for the smallest index i where (V, Ei) has a matching of size
|M∗|, we can determine a bottleneck maximum cardinality matching.

2 There are also algorithms in both settings that use fast matrix multiplication and
machine word operations, which we do consider here. For an overview see [DP14].

96 accelerated binary search

Gabow and Tarjan were able to successfully attack the logarithmic
factor with their balanced binary search technique.

Theorem 6.2.1 ([GT88a]). A bottleneck maximum cardinality matching
can be determined in time O(|E|

√︁
|V| log |V|).

It is a standard exercise that bipartite matching reduces to solving
a maximum flow problem in a unit-capacity network. In fact, the
bipartite orientation network for test value d = 1 from Section 3.6 is
an instance of this network. Theorem 6.2.1 can be proved for bipartite
graphs similarly to the analysis in Chapter 5. We sketch the general
case.

Proof sketch of Theorem 6.2.1. Let M∗ denote a maximum cardinality
matching in G. Perform a binary search for the minimum feasible
index i such that (V, Ei) has a matching of size |M∗| − |V|/∆. This
can be done in total time O(∆|E| log |V|). Augment the matching
found for (V, Ei) for the minimum feasible index i by performing at
most |V|/∆ augmentations in (V, Ei). Every time no augmentation is
possible, increase i. This second phase takes O(|E||V|/∆). The claim
follows for ∆ =

√︁
|V|/ log |V|.

Unfortunately, it appears that shrinking the search interval is not
possible, as it is an interval of edge weights in ascending order (corre-
sponding to the subsets Ei). The maximum matching size can be the
same for an interval of size Ω(|V|).

Still, conditional improvements are possible. As sketched in the
above proof, a (1 − ϵ)-approximation to the maximum cardinality
matching problem can be obtained in O(|E|ϵ−1) time, as noted in
[DP14] (see [MV80; GT91] and [HK73] for bipartite graphs). If
we have |M∗| ∈ O(|V|/ log |V|), then we can first compute a 1/2-
approximation in linear time and therewith set ϵ ≃

√︁
|V|/|M∗|. Per-

forming the binary search, we find the smallest i such that a matching
of size at least (1− ϵ)|M∗| = |M∗| − O(

√︁
|V|) exists in (V, Ei). This

takes total time O(|E||M∗|/
√︁
|V| log |V|), which by our assumption

is bounded by O(|E|
√︁
|V|). Performing O(

√︁
|V|) augmentations is

possible in time O(|E|
√︁
|V|) as in the previous proof sketch.

Unfortunately, the size |M| of a maximum cardinality matching
can be as large as ⌊|V|/2⌋. We note that good lower bounds on
the size of matchings are known for several graph classes [Bie+04]:
There is a matching of size at least (|V|+ 4)/3 in every 3-connected
planar graph with |V| ≥ 10, at least (|V| − 1)/3 in every connected
graph with maximum degree three, and at least |E|/(2∆− 1) in every
connected graph of maximum degree ∆.

7
C O N S TA N T- FA C T O R A P P R O X I M AT I O N S

7.1 the greedy algorithm

The greedy algorithm we shall review in this section has been de-
scribed independently by various researchers for different problems
(degeneracy, maximum density, orientations, pseudoarboricity, and
arboricity).

• Matula and Beck [MB83] describe the algorithm for determining
a vertex ordering (v1, . . . , v|V|) such that for every 1 ≤ i ≤ |V|, vi
has minimum degree in the induced subgraph G[{vi, . . . , v|V|}].
In particular, the algorithm computes the degeneracy1 of a graph
exactly. The authors analyze the runtime to be O(|E|+ |V|). (For
earlier explicit and implicit uses of the algorithm for coloring
problems, see the references in [MB83].)

• Kortsarz and Peleg [KP94] give a 1/2-approximation algorithm
for the maximum density problem. It is essentially the greedy
algorithm coupled with an unnecessary binary search. They
claim its runtime to be O((|E| + |V| log |V|) log |V|) without
giving details. Presumably, the term |V| log |V| corresponds to
extracting the minimum from a priority queue, while the second
log |V| comes from the binary search.

• Eppstein [Epp94] gives the greedy algorithm as a 2-approximation
to the orientation problem in linear time, which is used to deter-
mine the arboricity approximately. He notes that the produced
orientation is acyclic.

• Aichholzer et al. [AAR95] give the greedy algorithm for a 2-
approximation of the orientation problem in linear time. They
note the connection to the arboricity and maximum density.

• Arikati et al. [AMZ97] describe it as a linear-time 2-approximation
algorithm for the arboricity.

• Charikar [Cha00a] (noting a similar algorithm by [Asa+00]) de-
scribes it as a 1/2-approximation algorithm for the densest sub-
graph problem and notes the connection to the dual orienta-
tion problem. He also gives a greedy (1/2 + ϵ)-approximation
algorithm for the density in directed graphs with a runtime

1 The degeneracy is the smallest k ∈N0 such that every induced subgraph has a vertex
of degree at most k. It is closely related to the Szekeres–Wilf number [SW68].

97

98 constant-factor approximations

of O(|E|/ϵ log |V|), which was improved by Khuller and Saha
[KS09a] to O(|E|).

• Bezáková [Bez00] describes it as a 2-approximation algorithm
for the pseudoarboricity and orientation problems.

• Georgakopoulos and Politopoulos [GP07] describe the algorithm
as a 1/c-approximation algorithm for the densest hypergraph
problem where hyperedge sizes are bounded by c. It runs in
time O(|V| log |V|+ |E|c), and in linear time for simple graphs
(c = 2).

• Sozio and Gionis [SG10] extend the algorithm such that it can be
used to find a connected subgraph containing a given set S ⊆ V
with certain distance and degree properties.

• Borradaile et al. [Bor+17] state the greedy algorithm without
proving an approximation guarantee or a runtime bound, but
show that it finds a smallest maximum indegree acyclic orien-
tation. In fact, this ‘acyclic orientation number’ is equal to the
degeneracy of the graph.

The greedy algorithm is very simple: It removes a vertex u of minimum
degree and orients all (remaining) edges (u, v) towards u. This is
repeated until all vertices have been removed. The algorithm can
be made to run in O(|E|) time by storing the vertices in linked lists
according to their current degrees. When a vertex with the current
minimum degree is removed, it is unlinked from the corresponding list
using a pointer to its position. Its hitherto unremoved neighbors drop
in their degree and are moved between the linked lists accordingly,
each in constant time. To find the minimum vertex degree, one iterates
over the degree lists in ascending order until a nonempty list is found
or all lists have been considered.

Since the sum of degrees in the original graph is 2|E|, the number
of times we visit lists is bounded by 2|E|. As the current minimum
degree d can drop by at most one, one may start the next search for a
nonempty list from d− 1 instead of zero. Then, the number of lists
that are visited can be even bounded by O(|V|) [Cha00a].

As each edge in the graph is considered a constant number of
times, the algorithm runs in O(|E|) time. It obviously computes an
orientation of the graph. Moreover, if at each iteration one considers
the remaining vertices and edges as a subgraph, one can output the
subgraph with the highest density among these in the end2. We now
prove that the greedy algorithm simultaneously computes 1/2- and
2-approximations to the densest subgraph and orientation problems,

2 A trivial way of doing this is to run the algorithm once and record the maximum
density encountered, and another time to determine the subgraph for which the
maximum is attained.

7.2 the algorithm of asahiro et al . 99

respectively. We state the bounds slightly tighter than the original
authors by rounding d∗ appropriately.

Lemma 7.1.1 ([AAR95]). Every subgraph H of a simple graph G contains
a vertex of degree at most ⌊2d∗⌋.

Proof. Assume there exists a subgraph H where every vertex has a
degree greater than 2d∗. By the degree sum formula, its average
density is |EH |/|VH | > (|VH |2d∗/2)/|VH | = d∗, a contradiction. Thus,
there is a vertex of degree at most 2d∗, and therefore of at most
⌊2d∗⌋.

Theorem 7.1.2 ([AAR95]+[Cha00a]). The greedy algorithm returns an
acyclic d-orientation with ⌈d∗⌉ ≤ d ≤ ⌊2d∗⌋. Moreover, d/2 ≤ d(H) for
the returned subgraph H.

Proof. By Theorem 3.6.7, d is at least ⌈d∗⌉. In every iteration, the
vertex with minimum degree is removed, so at most ⌊2d∗⌋ edges are
oriented towards it by Lemma 7.1.1. Thus, no vertex in the orientation
produced by the algorithm has an indegree of more than ⌊2d∗⌋.

Clearly, the orientation is acyclic because the vertices form a topo-
logical ordering in reverse order of their removal.

For the second claim, assume that a vertex v is assigned more
than 2d(H) edges to it in the algorithm, and consider the remaining
subgraph K right before v is removed. By minimality of v’s degree
and the degree sum formula, the remaining subgraph K has density
d(K) = |EK|/|VK| > (|VK|2d(H)/2)/|VK| = d(H). But then, K would
have been returned instead of H, this is a contradiction. Therefore
d ≤ 2d(H).

Borradaile et al. [Bor+17] show that the orientation is optimal among
the acyclic orientations of the graph, this will be proved in Theo-
rem 9.0.1.

Corollary 7.1.3 ([Cha00a], [KS09a]). The greedy algorithm returns a sub-
graph H with ⌈d∗⌉ /2 ≤ d(H) ≤ d∗.

An alternative proof of Corollary 7.1.3 is possible with the help
of Lemma 11.0.1 [KS09a]. We note that both d/2 and d(H) are 1/2-
approximations to d∗, but d/2 is never closer to it than d(H) by
Theorem 7.1.2. Thus, we will use the value d(H) as a lower bound for
the preprocessing (Chapter 11) in our experiments in Chapter 12. This
proves to be more effective than d/2, which was used in [Blu16].

7.2 the algorithm of asahiro et al .

Another approximation algorithm is given by Asahiro et al. [Asa+07]
(Algorithm 7.1 on the next page), which achieves a (2 − 1/ ⌈d∗⌉)-
approximation for the orientation problem. This also holds for graphs

100 constant-factor approximations

with positive edge-weights, where the maximum weighted indegree is
to be minimized and the density is defined in the straightforward way
(see Equation (3.8)). The authors analyze the runtime to be O(|E|2).
As we shall see, it is possible to implement the algorithm in linear time
for unweighted graphs, and O(|E|+ |V| log |V|) for weighted graphs.
Asahiro et al. do not argue why the algorithm terminates. Let li denote

Algorithm 7.1: The (2 − 1/ ⌈d∗⌉)-orientation algorithm of
Asahiro et al. for unweighted graphs.

Input: A simple graph G = (V, E).
Output: A (2− 1/ ⌈d∗⌉)-orientation G⃗ of G (if ⌈d∗⌉ ≥ 1).
function orient(V, E):

Let l ← |E|/|V|
Let Vorig ← V
Let E⃗← ∅
repeat

while ∃v ∈ V with degG(v) ≤ ⌈2l⌉ − 1 do
foreach uv ∈ E do

orient u→ v in E⃗
E← E \ {uv}

V ← V \ {v}
if V = ∅ then

return (Vorig, E⃗)

l ← |E|/|V| /* current sizes of the sets V, E */

until ∀v ∈ V : degG(v) = ⌈2l⌉
while there is cycle (v1, . . . , vk) in G do

orient v1 → · · · → vk → v1 in E⃗ /* cycle loop */

E← E \ {v1v2, . . . , vkv1}
/* A forest remains, orient towards the leaves */

while ∃v ∈ V with degG(v) ≤ 1 do
orient u→ v in E⃗ for the unique uv ∈ E
E← E \ {uv}
V ← V \ {v}

return (Vorig, E⃗)

l and let Vi and Ei denote the vertices and edges of the remaining
graph after the i-th iteration of the repeat-until loop. The authors
claim correctly that3 ⌈2li+1⌉ ≥ ⌈2li⌉, but strict inequality is needed to
avoid an infinite loop. If we do not advance to the cycle loop, there
exists at least one vertex whose degree is at least ⌈2li⌉+ 1. Then, the

3 Although it might seem a trivial fact, it can not be deduced from Lemma 11.0.1. As
the footnote to the remark after that lemma exhibits, even if the threshold is less
than d∗, removing a vertex may result in a smaller average density. Thus, during an
iteration of the inner loop the average density may well decrease between two vertex
removals.

7.2 the algorithm of asahiro et al . 101

threshold will be higher in the next iteration of the repeat-until loop
because of the degree sum formula and the choice of 2 as the constant:

⌈2li+1⌉ =
⌈︃

2
|Ei+1|
|Vi+1|

⌉︃
≥
⌈︃

2
|Vi+1| ⌈2li⌉+ 1

2|Vi+1|

⌉︃
= ⌈2li⌉+ 1.

Theorem 7.2.1 ([Asa+07]). The algorithm of Asahiro et al. finds a (⌈2d∗⌉−
1)-orientation if d∗ > 1/2, and a ⌊2d∗⌋-orientation otherwise.

Proof. The claim is true if |E| = 0. If d∗ = 1/2, the graph becomes
1-oriented. In the following, let d∗ > 1/2.

All vertices removed in the repeat-until loop have an indegree of at
most ⌈2lmax⌉ − 1 ≤ ⌈2d∗⌉ − 1, where lmax is the maximum l attained
in the repeat-until loop.

At the beginning of the cycle loop we have a ⌈2l⌉-regular graph
whose maximum density is equal to ⌈2l⌉. Note that by arbitrarily ori-
enting all remaining edges we would already obtain a 2-approximation.
Furthermore, we could achieve our goal for fractional orientations by
assigning every edge 1/2 to each of its endpoints.4

In the forest loop the remaining forest is 1-oriented. The maximum
indegree of the vertices processed in the cycle loop is bounded by
⌈2l⌉ − 1 because a vertex is either contained in at least one cycle (thus
it has at least one outgoing edge in G⃗) or it is only contained in the
remaining forest (thus its maximum indegree is 1). The maximum
indegree dmax is thus bounded by

dmax ≤ ⌈2d∗⌉ − 1 ≤ 2 ⌈d∗⌉ − 1.

Put differently, the algorithm finds a (2− 1/ ⌈d∗⌉)-approximation
to the orientation problem if d∗ > 1/2.

One may wonder whether a constant 1 < c < 2 could be used
for a threshold of ⌈cl⌉ − 1 in the repeat-until loop in order to obtain
smaller indegrees, because the cycle orientation loop essentially halves
degrees of about ⌈2cl⌉. However, the degree sum formula does not
guarantee termination of the repeat-until loop for such c.

Asahiro et al. give a straighforward runtime analysis (in the edge-
weighted case). The repeat-until loop can be implemented in time
O(|E||V|), the cycle loop inO(|E|2) by performing depth-first searches,
and the forest loop takes O(|V|). Let us now turn to an improved
runtime analysis of the algorithm.

Proposition 7.2.2. The algorithm of Asahiro et al. can be implemented in
timeO(|V|+ |E|) for unweighted graphs, and in timeO(|V| log |V|+ |E|)
for edge-weighted graphs.

4 In fact, if we are only interested in an approximation of the value ⌈d∗⌉, we need not
perform the forest loop and can save some time.

102 constant-factor approximations

Proof. The iterations of the first loop can be performed in O(|E|) total
time (instead of O(|V||E|) as analyzed by the authors) by essentially
performing the greedy algorithm from the previous section with the
degree-tracking lists, and the addition that we pause once the mini-
mum degree is ⌈2l⌉ and reset l or leave the loop. In order to detect
whether all remaining vertices have the same degree, we additionally
keep track of the current maximum degree. The forest loop can also
be seen as an execution of the greedy algorithm and can thus be
implemented in linear time.

The cycle loop need not be performed in up to O(|E|) full depth-
first searches to find one cycle per search (as described by the authors).
It is possible to perform a single modified depth-first search that, once
a cycle is found, orients along it and resumes the search in the first
vertex of the cycle.5 We omit the details for the following reason:

As pointed out by Fischer6, a simple reduction can be used such
that known properties and algorithms can be exploited. The resulting
algorithm is essentially identical to the modified depth-first we had
originally devised.

It is well known that the number of vertices with odd degree is
always even, which is sometimes referred to as the ‘handshaking
lemma’. It is easily proved from the degree sum formula. Add a
special vertex v∗ and add an edge (u, v∗) for every vertex u of odd
degree. Every vertex in this modified graph has even degree. It
follows from Theorem 2.2.1 that every connected component has an
Euler tour. Such tours can be found in all connected components with
Hierholzer’s algorithm [HW73] in O(|E|) total time. By orienting the
edges along the tours, every vertex receives exactly half its modified
degree, as the number of times we enter a vertex equals the number of
times we leave it. In the end, one removes v∗ and the additional edges.
(The loop for 1-orienting the forest is now not necessary.) The indegree
of a vertex of even degree is now exactly half its degree because no
edge was added to it. The indegree of a vertex v of odd degree is
either (deg(v) + 1)/2 or ⌊deg(v)/2⌋, depending on the orientation of
the additional edge. Unless v’s degree is equal to one, at least one
edge must point away from v because its edges were oriented along
the Euler tour. Therefore, the approximation factor is achieved in this
variant of the algorithm.

In the case of edge weights, the algorithm can be implemented in
O(|E|+ |V| log |V|) time: Using Fibonacci heaps [FT87], the vertex of
minimum weighted degree can be extracted with a priority queue in
O(log |V|) amortized time, and the weighted degree of a vertex can
be updated in constant amortized time. Strict Fibonacci heaps [BLT12]
can even perform the operations in the same worst-case times.

5 The algorithm is given in our preprint at https://arxiv.org/abs/1811.06803v1.
6 Frank Fischer, personal communication, November 2018.

https://arxiv.org/abs/1811.06803v1

7.3 kowalik’s scheme for fixed ϵ 103

7.3 kowalik’s scheme for fixed ϵ

For any fixed ϵ > 0, a (1 + ϵ)-approximation can be obtained with
Kowalik’s approximation scheme [Kow06] in time O(|E| log |V| log d∗)
(see Section 4.2). It is moreover possible to stop the binary search
once the ratio ui/li is sufficiently small, and thus eliminate the factor
log d∗. We will also use this for our arboricity approximation scheme
in Chapter 10.

Proposition 7.3.1. For any constant ϵ > 0, we can compute a d-orientation
with ⌈d∗⌉ ≤ d ≤ ⌈(1 + ϵ)d∗⌉ in time O(|E| log |V|).

Proof. Compute a 2-approximation dG in linear time with the greedy
algorithm and use u1 := dG ≤ 2d∗ as an initial feasible upper bound
and l1 := dG/2 ≥ d∗/2 as an initial lower bound. Note that |E| ≥ 1
implies l1 > 0. We keep the upper bound feasible at all times.

The binary search can be safely stopped once ui ≤ ⌈(1 + ϵ)li⌉, as
then the feasible ui can be returned as the approximation. Thus assume
for test value ti+1 = ⌊(ui + li)/2⌋ that ui > ⌈(1 + ϵ)li⌉ ≥ (1 + ϵ)li.
Note that each test takes O(|E| log |V|) time.

If test ti+1 fails, we update the lower bound to ⌊(ui + li)/2⌋+ 1 and
get

ui+1

li+1
=

ui⌊︂
ui+li

2

⌋︂
+ 1

<
ui

(1+ϵ)li+li
2

=
2

2 + ϵ

ui

li
. (7.1)

If test ti+1 is successful, we update the upper bound to the feasible
value ⌊(ui + li)/2⌋ and obtain

ui+1

li+1
=

⌊︂
ui+li

2

⌋︂
li

≤
ui+li

2
li
≤ min

(︃
1
2

ui

li
+

1
2

,
2 + ϵ

2 + 2ϵ

ui

li

)︃
(7.2)

≤ 1
2

ui

li
+

1
2

.

(The last inequality is an observation that is of no consequence here.)
Since ϵ is fixed, the bound ratio decays exponentially by (7.1) and

(7.2). A constant number of tests suffice to reduce the initial ratio of
u1/l1 ≤ 2d∗

d∗/2 = 4 to 1 + ϵ or less. Therefore, we have a runtime of
O(|E| log |V|).

Note that the reduction in the success case is worse than in the
failure case for ui/li ≤ 2+ϵ

2−ϵ . Otherwise, the reduction in the failure
case is worse.

The constant introduced in the proof can be rather large. In order
to reach 1 + ϵ from the initial ratio of four, the number of tests is at
most 27 for ϵ = 0.1, and at most 2772 for ϵ = 0.001. (In addition, a
factor of roughly ϵ−1 in the runtime comes from the Taylor expansion
of log1+ϵ in Kowalik’s scheme!)

104 constant-factor approximations

However, we can first approximate with the modified scheme to
obtain an initial ratio smaller than four. For example, by setting
ϵ = 0.1, we get a ratio of at most 1.12 = 1.21. The number of tests for
ϵ = 0.001 is then at most 380. Therefore, we can save some time by
approximating repeatedly.

8
A R B O R I C I T Y A N D P S E U D O A R B O R I C I T Y

Nur der Einsame findet den Wald;
wo ihn mehrere suchen, da flieht er,
und nur die Bäume bleiben zurück.

— Peter Rosegger, Schriften des Waldschulmeisters (1875)

In this chapter, we will see the connection of the orientation problem
to a covering problem on matroids. Throughout the chapter, we will
assume the ground sets of matroids to be finite and nonempty. We
also assume that graphs have at least two vertices. We partly follow
the presentation in the textbook by Scheinerman and Ullman [SU13],
which draws on the work of Payan [Pay86] and Catlin et al. [Cat+92].

8.1 forests and pseudoforests

The following characterization of acyclic simple graphs is well known
and will lead to our first example of a matroid.

Proposition 8.1.1 (E.g., [Bap14]). The columns of the incidence matrix
I(G) of a simple graph G = (V, E) are linearly independent over {0, 1} if
and only if the graph is acyclic (i.e., a forest).

Proof. ‘⇒’: Assume G contains a cycle with edges e1, . . . , en. Then by
taking the sum over the corresponding columns, we obtain the zero
vector. This is due to the fact that the number of cycle edges incident
to a vertex is even and we operate over {0, 1}.

‘⇐’: If G is a forest, then for any subset X ⊆ E, the graph (V, X) is
also a forest. Every tree of at least two vertices has at least one vertex
of degree one. The claim holds if |E| = 0. Now let |E| ≥ 1. When
adding up the columns corresponding to any X ̸= ∅, there is a one in
at least one row.

Let us consider a definition of ‘almost acyclic’ graphs.

Definition 8.1.2. A graph G is a pseudoforest if every connected com-
ponent of G has at most one simple cycle. If G is connected, it is called
a pseudotree. If a pseudotree contains exactly one cycle, it is called a
unicyclic component. A component of a graph that is not a pseudotree
is said to be bicircular.

Gabow and Westermann observe that a graph is a pseudoforest if
and only if it has a 1-orientation [GW92, Lemma 3.2]. A generalization
of this fact with a rigorous proof will be given in Theorem 8.2.4.

105

106 arboricity and pseudoarboricity

It provides an alternative proof to the following characterization of
pseudoforests.

Proposition 8.1.3 ([Whi88]). A graph (V, E) is a pseudoforest if and only
if |E[S]| ≤ |S| for all S ⊆ V.

Proof. By Theorem 3.6.8, a graph has a 1-orientation if and only if
|E[S]| ≤ |S| for every S ⊆ V. A 1-orientation exists if and only if the
graph is a pseudoforest (Theorem 8.2.4).

Definition 8.1.4. For a graph G = (V, E) we define the set systems

F (G) := {F ⊆ E | (V, F) is a forest},
B(G) := {P ⊆ E | (V, P) is a pseudoforest}.

We will soon see that F and B are matroids. F is called the cycle
matroid, while B is called the bicircular matroid, and the two are closely
related.1 A matroid is called graphic if it is (isomorphic to) the cycle
matroid of a graph.

While rank functions are defined on matroids, we can assume they
are defined on set systems for an easier presentation.

Proposition 8.1.5 ([Tut65],[Zas82]). Let G = (V, E) be a simple graph.
Then F (G) and B(G) are independence systems.

For X ⊆ E, let n(X) = |V[X]|. Let c(X) denote the number of con-
nected components and a(X) the number of acyclic connected components
of (V[X], X), respectively (if X = ∅, we define c(X) = 0 = a(X)). The
rank functions of F and B are

ρF (X) = n(X)− c(X), (8.1)

ρB(X) = n(X)− a(X). (8.2)

Proof. Clearly, X = ∅ is in both F and B, and both set systems
are closed under the subset relation. Hence, they are independence
systems. For the rank functions, first consider sets X ∈ M, where
M ∈ {F ,B}. The claim is seen to be true for |X| ∈ {0, 1}. In the
following, let |X| ≥ 2.

We prove (8.1) for X ∈ F by induction over the number of connected
components c(X). If c(X) = 1, we have a tree, and the claim is
true. Let now c(X) ≥ 2 and let the claim hold for all forests X̃ with
c(X̃) < c(X). By inserting an artificial edge e between two different
connected components of (V[X], X), we obtain a forest X ∪ {e} of
c(X)− 1 connected components and can use the induction hypothesis
to obtain

ρF (X) + 1 = ρF (X ∪ {e}) = n(X ∪ {e})− c(X ∪ {e})
= n(X)− (c(X)− 1).

1 In fact, B is the 1-elongation matroid of F [SU13].

8.1 forests and pseudoforests 107

The claim follows by subtracting one on both sides.
In order to prove (8.2) for X ∈ B, let u(X) denote the number of

unicyclic components of (V[X], X). Remove one arbitrary edge from
the unique cycle in every unicyclic component. A forest X̃ remains
with

ρF (X̃)
(8.1)
= n(X̃)− c(X̃) = n(X)− c(X)

= n(X)− (u(X) + a(X)). (8.3)

Thus,

ρB(X) = ρB(X̃) + u(X) = ρF (X̃) + u(X)
(8.3)
= n(X)− a(X),

and the claim follows.
If X /∈ M, then identify the cyclic connected components. For

every such component, while there is more than one cycle, remove an
arbitrary edge on a cycle. For F , we continue further until there is
no cycle. This process does not disconnect the connected components
and in case of B, no cyclic component becomes ayclic. In particular, no
nonisolated vertex becomes isolated. Hence, for the remaining edges
Y ⊆ X, we have Y ∈ M, n(Y) = n(X), c(Y) = c(X), and a(Y) = a(X)

for M = B. Since the choice of edges was arbitrary, there is no
independent subset of X with larger cardinality.

We will now show the third matroid property for F and B.

Proposition 8.1.6 ([Whi35],[Sim72]). Given a simple graph G = (V, E),
F (G) and B(G) are matroids for ground set E.

Proof. By Propositions 2.10.1 and 8.1.1, F is a matroid. Alternatively,
this could be proved with the help of Proposition 8.1.5. Let us now
turn to B, and define n(X) and a(X) as in Proposition 8.1.5.

We already know that B is an independence system. For the third
matroid property, let X and Y be pseudoforests on V with |X| > |Y|.
For every e ∈ X \Y, consider He = (V, Y ∪ {e}).

If e joins a tree with a pseudotree, or e connects two vertices in the
same tree, He is a pseudoforest. Thus we have found an e ∈ X \ Y
such that Y ∪ {e} ∈ B. Otherwise, e joins two unicyclic components or
connects two vertices inside a unicyclic component. In these cases, He

contains a single bicircular component. We assume in the following
that adding any e ∈ X \Y results in a bicircular component.

If a vertex u is isolated in (V, Y), then it is also isolated in (V, X),
for otherwise we could have added some (u, v) ∈ X \ Y. Hence
n(Y) ≥ n(X). If all connected components of (V, Y) are (uni-)cyclic,
we have by (8.2)

ρB(Y) = n(Y) ≥ n(X) ≥ ρB(X),

108 arboricity and pseudoarboricity

a contradiction. Therefore, an acyclic connected component A ⊆ Y
exists. Every e ∈ X incident to a vertex of V[A] must be in Y, for
otherwise it could have been added. Therefore, a surjective map from
the acyclic components of (V, X) to the acyclic components of (V, Y)
exists, and hence a(Y) ≤ a(X). By Equation (8.2), we have

|Y| = ρB(Y) = n(Y)− a(Y) ≥ n(X)− a(X) = ρB(X) = |X|,

a contradiction.

We note that the bicircular matroid also has a (less obvious) matrix
representation [Zas82; CGW91].

8.2 matroid partitioning and covering numbers

Definition 8.2.1. A matroid k-partition over a matroid M for ground
set S is a partition (S1, . . . , Sk) of S such that each Si is an independent
set inM.

One can also partition S into independent sets from different ma-
troids (M1, . . . ,Mk) over S. However, here we only consider parti-
tions where all matroids are identical.

Definition 8.2.2. The covering number of a loopless2 matroidM over S,
denoted k(M), is the smallest integer k such that a matroid k-partition
of S exists.

Given a simple graph G, the arboricity Γ(G) is the covering number
of the cycle matroid F , and the pseudoarboricity p(G) is the covering
number of the bicircular matroid B.

Examples of forest and pseudoforest partition can be seen in Fig-
ure 1.3 on page 3.

We already defined p(G) in Section 3.6, and it will now become
apparent why the letter p was chosen. The following theorem is due
to Picard and Queyranne.

Theorem 8.2.3 ([PQ82]). For a simple graph G, p(G) = ⌈d∗(G)⌉.

An alternative proof of this theorem based on matroid theory, due
to [SU13], will be developed in this section (another, also based on
matroid theory, is given by Westermann [Wes88]). By Theorem 3.6.7,
we then know that the pseudoarboricity equals the smallest maximum
indegree. However, this also follows from an accessible algorithmic
theorem given independently by Bezáková and Kowalik.

Theorem 8.2.4 ([Bez00; Kow06]). Let G be a simple graph and d ∈ N0.
There is a partition into d pseudoforests if and only if a d-orientation exists,
and one can be computed from the other in time O(|E|).

2 k(M) exists if and only ifM is loopless, otherwise we would write k(M) = ∞.

8.2 matroid partitioning and covering numbers 109

Proof. The case d = 0 is obvious.
‘⇒’: For d ≥ 1, let (P1, . . . , Pd) be a pseudoforest partition of E.

Every pseudotree can be 1-oriented: If it is a tree, turn it into an
arborescence, which has maximum indegree one. In presence of a
cycle pick an edge uv on the cycle. Set aside uv, now the remaining
graph can be turned into an arborescence rooted at v. The indegree
of any vertex is at most one, and this still holds when we orient the
remaining edge as u→ v.

It follows that a pseudoforest is 1-orientable. Carry out this proce-
dure for the d pseudotrees to obtain a d-orientation, which is possible
in linear time.

‘⇐’: Let G⃗ be a d-orientation of G. We prove by induction that G
can be partitioned into d pseudoforests. It is not diffult to see that this
proof can be turned into a linear-time algorithm.

Consider for the base case d = 1 a connected component (in the
undirected sense) with n vertices. It has at least n− 1 edges because
it contains a spanning tree. It has at most n edges, for otherwise a
1-orientation would not be possible by the pigeonhole principle. There-
fore, the component is a tree or unicyclic. Hence, each component is a
pseudotree and the graph is a pseudoforest.

Let the induction hypothesis hold for all d′ < d for some d ≥ 2. For
every vertex in a d-orientation, take away one edge entering it (if any).
This is a 1-orientation and thus can be converted into a pseudoforest.
The remaining graph is a d− 1 orientation and can be converted into
d− 1 pseudoforests by the induction hypothesis.

Corollary 8.2.5. The pseudoarboricity equals the smallest maximum inde-
gree.

As every forest is a pseudoforest, the pseudoarboricity is a lower
bound on the arboricity. However, Picard and Queyranne prove a
much closer relationship in Theorem 8.2.7. An alternative proof of it
that uses matroid clumps is given by Westermann [Wes88]. We will
develop a new and algorithmic proof in Chapter 10.

Theorem 8.2.6 ([PQ82]). Let G be a simple graph. Then

Γ(G) ∈ {p(G), p(G) + 1}.

Figure 1.3 on page 3 shows an example of a graph with p = 2
and Γ = 3. As we shall see, Theorem 8.2.6 is used in an arboricity
algorithm by Gabow and Westermann (Theorem 8.3.2), and we will
use it for a new runtime result in Chapter 11.

In order to give a first proof of Theorem 8.2.6, let us look at a classic
theorem by Nash-Williams [Nas64] (see also [Nas61] for a related
packing problem), which was independently discovered in a more
general form by Edmonds [Edm65]. Alternative proofs are given by
Chen et al. [Che+94] and Reiher and Sauermann [RS14].

110 arboricity and pseudoarboricity

Theorem 8.2.7 ([Nas64; Edm65]). Let G be a simple graph. Then

Γ(G) = max
(VH ,EH)⊆G,
|VH |≥2

⌈︃ |EH |
|VH | − 1

⌉︃
. (8.4)

That Γ(G) is at least the expression on the right-hand side of (8.4)
is not difficult to see, as [SU13] explains: Every acyclic spanning
subgraph of G has at most |V| − 1 edges, so Γ(G) ≥ |E|/(|V| − 1),
and we can round up because Γ(G) is an integer. As the arboricity
of a graph is at least the arboricity of any of its subgraphs, we get
the desired inequality. That (8.4) holds with equality is, however, not
immediate. Let us first assume it as fact and prove Theorem 8.2.6 with
it, as in [PQ82].

Definition 8.2.8. Given a simple graph G, the fractional arboricity3

γ(G) is defined as

γ(G) := max
(VH ,EH)⊆G,
|VH |≥2

|EH |
|VH | − 1

. (8.5)

Note that although γ is very close to d∗, a densest subgraph does
not necessarily maximize (8.5). An example are all but one densest
subgraphs in Figure 3.1 on page 50. Likewise, a subgraph maximizing
(8.5) need not be a densest subgraph, an example is given in Figure 9.5
on page 134.

Lemma 8.2.9 ([PQ82]). A simple graph G satisfies γ(G) ≤ d∗(G) + 1/2.

Proof. Let D = (VD, ED) denote a densest subgraph and H = (VH, EH)

a subgraph that maximizes (8.5). If we had γ > d∗ + 1/2, this would
yield

|EH |
|VH | − 1

>
|ED|
|VD|

+ 1/2 ≥ |EH |
|VH |

+ 1/2.

By rearranging, we obtain

|EH | >
|VH |(|VH | − 1)

2
,

i.e., more edges than a complete graph on |VH | vertices can have. This
is a contradiction.

Proof of Theorem 8.2.6. The claim holds if |E| = 0. In the following,
let |E| ≥ 1. Since trivially p(G) ≤ Γ(G) holds, we have to show that
Γ(G) ≤ p(G) + 1. From Lemma 8.2.9 and (8.4) we obtain the desired
Γ(G) ≤ ⌈d∗⌉+ 1 = p(G) + 1.

3 We note that if the |VH | are required to be odd, the resulting measure for multi-graphs
has an interesting relationship with edge colorings [Sey79; CZZ19].

8.2 matroid partitioning and covering numbers 111

Corollary 8.2.10 ([PQ82]). If d∗ ̸= 0 is an integer, then Γ = p + 1, and if
d∗ ≤ p− 1/2, then Γ = p.

In order to compute the covering number and the corresponding
partition, Edmonds [Edm65] proposes the following matroid partition-
ing algorithm. Given a test value k, the algorithm finds a k-partition
of S if one exists, and otherwise returns an independent set Y with
|Y| > kρ(Y), which is a certificate that no k-partition exists. The map-
ping of elements to the sets of a partition is called a coloring, i.e., every
set of the partition corresponds to a distinct color. If some elements
are unassigned, we have a partial coloring.

It is possible to assign color i to an element x /∈ Si if Si ∪ {x} is
independent. For short, we write x ← ⟨i⟩.

For elements x, y where y is colored as y ∈ Si and x /∈ Si has a
different color or is uncolored, we write x ← y if Si \ {y} ∪ {x} is
independent. This means that we can re-color: x gets y’s color, and
y loses its color. More generally, we can re-color entire paths. The
relation← defines a directed graph on the set S.

Lemma 8.2.11 ([Edm65]). LetM be a matroid and S1, . . . , Sk be a partial
coloring of S. Suppose there is a directed path

x0 ← x1 ← · · · ← xn

that is minimal in the sense that xi ↚ xj for i > j + 1 and xi ↚ ⟨a⟩ for
i < n, then modifying (S1, . . . , Sk) by re-coloring the x0, . . . , xn according
to the path is a proper partial coloring of S.

While the lemma is quite intuitive, it is not trivial because re-coloring
a single element changes the←-relation globally. We omit the lengthy,
technical proof and refer the reader to the textbook by Scheinerman
and Ullman [SU13, Lemma 5.3.1]. Matroid partitioning is now possible
by repeatedly applying Lemma 8.2.11 to uncolored vertices that serve
as the end x0 of the path.

The following theorem, together with its proof, establish the cor-
rectness of Algorithm 8.1 on the following page. We note that we saw
a special case of Lemma 8.2.11 and Theorem 8.2.12 for B in disguise
in Theorem 3.6.8 and its proof (the path reversal algorithm), which
becomes apparent by the equivalence of pseudoforest d-partitions and
d-orientations (Theorem 8.2.4).

Theorem 8.2.12 ([Edm65]). Let M be a loopless matroid over S and let
k ∈ N0. Then S has a partition into k independent sets if and only if
|Y| ≤ kρM(Y) for all Y ⊆ S.

Proof. If Algorithm 8.1 never reaches the else-block, then it stops with
a k-partition of S because the number of uncolored vertices decreases
in the if-block. As every set Y ⊆ S must be distributed among the k
sets of a k-partition, the latter’s existence implies that |Y| ≤ kρ(Y).

112 arboricity and pseudoarboricity

Algorithm 8.1: Edmonds’s matroid partitioning algorithm for
test value k.
Input: A loopless matroid M over a (finite) ground set S, and

k ∈N.
Output: A partition S = S1 ∪̇ . . . ∪̇ Sk with Si ∈ M for all

i = 1, . . . , k, or a Y ⊆ S with |Y| > kρ(Y).
Si ← ∅ for all i = 1, . . . , k
while S ̸= ⋃︁k

i=1 Si do
// There exist uncolored vertices

if there is a directed path from a color class to an uncolored
element x0 then

re-color along a minimal such directed path
else

Let Y be the set of elements from which an uncolored
element can be reached in the directed graph

return Y
return (S1, . . . , Sk)

We now prove that if the algorithm reaches the else-block, then the
returned Y has |Y| > kρ(Y). Let U ̸= ∅ denote the set of uncolored
vertices, and let V = Y \U. We have |Y| > |V|.

We show that

ρ(Y) = |Y ∩ Si| ∀i = 1, . . . , k. (8.6)

As Y ∩ Si is an independent set, we have ρ(Y) ≥ |Y ∩ Si|. Now assume
ρ(Y) > |Y ∩ Si|. Thus there exists x ∈ Y \ Si such that (Y ∩ Si) ∪ {x}
is independent.

Consider Si ∪ {x}, which is not independent because then there
would be a directed path x ← ⟨i⟩, and thus we would not have entered
the else-block. So Si ∪ {x} contains a (unique) minimal dependent set
C that is (by independence of (Y ∩ Si) ∪ {x}) not contained in Y, so
there is a z ∈ C \ Y. In particular, z ̸= x and hence z ∈ Si \ Y. Thus
(Si \ {z}) ∪ {x} is independent, so x ← z.

This, however, is a contradiction to the fact that x ∈ Y but z ∈ Y.
This proves (8.6). Finally, we obtain

kρ(Y) =
k

∑
i=1

ρ(Y)
(8.6)
=

k

∑
i=1
|Y ∩ Si| =

⃓⃓⃓⃓
⃓ k⋃︂
i=1

Y ∩ Si

⃓⃓⃓⃓
⃓ = |V| < |Y|.

Corollary 8.2.13 ([Edm65]). LetM be a loopless matroid, and let ρ denote
its rank function. Then its covering number is

k(M) = max
Y⊆S
Y ̸=∅

⌈︃ |Y|
ρM(Y)

⌉︃
. (8.7)

8.2 matroid partitioning and covering numbers 113

Theorem 8.2.7 can now be obtained from this corollary with the rank
function of F : One can show that the maximum of (8.7) is attained at
a set Y such that (V[Y], Y) is connected and not an isolated vertex. For
such a set Y, the rank function (8.1) is ρF (Y) = |V[Y]| − 1. For the full
proof (which is somewhat similar to the proofs of Propositions 3.1.3
and 3.1.4), see [SU13].

Analogously, we can proceed with the pseudoarboricity. Similarly
to the fractional arboricity (8.5), we can define the fractional covering
number.

Definition 8.2.14. The fractional covering number of a loopless matroid
M over ground set S is

k f (M) := max
Y⊆S
Y ̸=∅

|Y|
ρM(Y)

.

Indeed, the fractional covering number of the cycle matroid F is the
fractional arboricity defined in (8.5). Let us now turn to the fractional
pseudoarboricity. The following theorem was stated by Scheinerman
and Ullman for connected cyclic graphs. However, the theorem holds
for all graphs that contain a cycle.

Theorem 8.2.15 ([SU13]). If G contains a cycle, then d∗(G) = k f (B(G)).

Proof. We know by Proposition 3.1.4 that d∗(G) is attained on a con-
nected subgraph H = (VH, EH) of G. By Lemma 3.1.5 we can conclude
that H must contain a cycle as well. Thus, according to Proposi-
tion 8.1.5, the rank of EH is ρB(EH) = |VH |. Thus,

k f (B) ≥
|EH |
|VH |

= d∗(G).

To show the other inequality, note that for every set X ⊆ E such
that (V, X) is acyclic, we have

ρB(X) = n(X)− a(X)
(8.1)
= (ρF (X) + a(X))− a(X)

= (|X|+ a(X))− a(X) = |X|.

Hence |X|/ρB(X) = 1. Thus, if the fractional covering number is
greater than one, the set Y maximizing it must induce a cyclic graph,
and we can restrict ourselves to Y such that all connected components
of (V, Y) are cyclic. Thus, ρB(Y) = n(Y), and

k f (B) =
|Y|

ρB(Y)
=
|Y|

n(Y)
≤ d∗.

Note that the theorem fails for graphs where all components are
acyclic, e.g., the graph with two vertices and one edge. As a corollary
to Theorem 8.2.15, we obtain Theorem 8.2.3.

114 arboricity and pseudoarboricity

Proof of Theorem 8.2.3. If |E| = 0, p = 0 and d∗ = 0. Let now |E| ≥ 1. If
the graph is disconnected, decompose it into its connected components.
The pseudoarboricity and the maximum density of a graph are exactly
the maximum pseudoarboricity and the highest maximum density
among its connected components (see Section 3.1). Thus for the
remainder we assume G is connected.

If the graph is a tree, then p = 1 and 0 < d∗ < 1, hence the claim
holds. If the graph is cyclic, apply Theorem 8.2.15 and Corollary 8.2.13

to obtain

⌈d∗⌉ =
⌈︁
k f (B)

⌉︁
= k(B) = p.

8.3 runtimes for computing the (fractional) arboricity

Let us now examine the runtime of Edmonds’s algorithm to determine
the covering number. If the matroid is unspecified, we count the
number of times we ask for independence of a set. This is called the
number of accesses to the independence oracle.

Theorem 8.3.1 (Essentially [SU13]). The covering number of a matroid M
over S can be determined with O(|S|3 log |V|) queries to the independence
oracle.

Proof. Perform a binary search for the minimum k such that Algo-
rithm 8.1 returns a k-partition. This needs O(log |S|) tests. (In [SU13]
a linear search is used for up to |S| tests.)

As there are |S| elements to be added to the partition, the ‘then’-
block is executed at most |S| times. The number of independence tests
performed in the block is O(|S|2).

Gabow and Westermann propose partitioning algorithms specif-
ically for arboricity and pseudoarboricity (see also [PQ82; GS85]).
(Algorithms for the special case of planar graphs will be treated in
Sections 9.2.5 and 9.2.6.) In Westermann’s thesis [Wes88], the algo-
rithm for pseudoarboricity is formulated in terms of matroids entirely
(though it borrows ideas from the analysis of the algorithms of Dinitz
and Hopcroft–Karp), the subsequent paper [GW92] uses the bipartite
network (Section 3.6) and ‘degree-constrained’ subgraphs (in other
words, orientations). The analysis, however, is still in terms of ma-
troids, and we re-phrased it in terms of flows entirely in Chapter 5.

Theorem 8.3.2 ([Wes88; GW92]). The pseudoarboricity p, along with a
partition into p pseudoforests, can be determined in time

O
(︃
|E|min

(︃√︂
|E| log p, (|V| log p)2/3

)︃)︃
.

8.3 runtimes for computing the (fractional) arboricity 115

The arboricity Γ, along with a partition into Γ forests, can be determined
in time

O
(︂
|E|5/3 log1/3 |V|+ |E|4/3|V|1/3 log2/3 |V|

)︂
,

and, if |E| ∈ Ω(|V|3/2 log |V|) holds, in time

O(|V||E| log |V|).

We note that in [GW92, Table 1] the condition |E| ∈ Ω(|V|3/2 log |V|)
is erroneously stated for the first of the two time bounds. This first
runtime bound uses a conversion of pseudoforest partitions into forest
partitions, which we will review in Section 9.1.

In general, the arboricity can be determined by computing the
pseudoarboricity p and then testing whether a partition into p forests
exists with a matroid partitioning algorithm for F . If p is not feasible,
then Γ = p + 1 by Theorem 8.2.6.4 This eliminates the binary search.

In Chapter 11, we will work the other way around in a certain
scenario: We compute the arboricity of a subgraph first, which leaves a
constant-size interval for the pseudoarboricity to check. The arboricity
algorithm that we will use is due to Gabow.

Theorem 8.3.3 ([Gab98]). The arboricity Γ(G), along with a partition into
Γ forests, can be determined in time O(|E|3/2 log(|V|2/|E|).

The algorithm uses Newton’s method on polymatroids and an
extension of the Hao–Orlin algorithm for minimum cuts [HO92]. A
discussion would carry us too far afield.

Picard and Queyranne [PQ82] reduce the pseudoarboricity and
arboricity problems to 0-1 fractional programming problems (see
Subsection 3.3.1). We note that in this approach the arboricity and
maximum density are determined with O(|V|) minimum cut com-
putations, while the pseudoarboricity is determined with O(log |V|)
minimum cut computations in a binary search. This is somewhat
peculiar because we saw approaches based on binary search for the
maximum density in previous chapters, and the maximum density
problem is dual to the relaxation of the orientation problem.

Approximation algorithms for the fractional covering problem are
described by Plotkin et al. [PST91]. A recent approximation scheme
for the fractional arboricity γ specifically was given by Toko Worou
and Galtier.

Theorem 8.3.4 ([TG16]). For a simple graph G = (V, E) and every ϵ > 0,
a subgraph (VH, EH) of G satisfying

γ(G)

1 + ϵ
≤ |EH |
|VH | − 1

≤ γ(G)

can be found in O(|E| log2 |V| log(|E|/|V|)ϵ−2) time.

4 If the corresponding partition into forests is desired, start another test for p + 1.

116 arboricity and pseudoarboricity

Note that the dependence on ϵ is inversely quadratic and hence this
runtime would not be fast enough for the search interval shrinking in
Chapter 6.

The algorithm uses a linear programming formulation of the ar-
boricity problem in the minimization sense and then approximately
solves the dual problem. To this end, maximum spanning trees are
computed with respect to a weight function that corresponds to a
dual LP solution. After a maximum spanning tree Ti has been com-
puted, the weights are modified and a maximum spanning tree Ti+1

is computed on the modified weights. After K ≃ γ ln |E|/ϵ2 iterations,
the algorithm stops and the desired subgraph can be extracted in
time O(|E| log |V|) from the dual LP solution. In order to set K, a
2-approximation algorithm is used, just as we did in Chapter 6. In
order to remove the runtime dependency on γ, the authors use a fast
preprocessing that is very similar to the one we will use in Chapter 11.

Recall that Kowalik’s approximation scheme (Section 4.2) approx-
imates d∗ as a value via the dual orientation problem, but does not
compute approximately densest subgraphs. On the other hand, the
approximation scheme of Toko Worou and Galtier does not compute a
forest partition, but it approximates the densest subgraph by comput-
ing approximately densest subgraphs for the slightly different density
measure γ. We will address the covering problem for F constructively
in Chapters 9 and 10.

8.4 bounds for arboricity and pseudoarboricity

The arboricity was first bounded by Chiba and Nishizeki.

Theorem 8.4.1 ([CN85]).

Γ(G) ≤
⌈︄√︃
|E|
2

+
|V|
4

⌉︄
(8.8)

We can improve over it.

Proposition 8.4.2. The arboricity bound

Γ(G) ≤
⌈︄√︃
|E|
2

+
1
16

+
1
4

⌉︄
(8.9)

derived from Proposition 3.2.2 is tighter than bound (8.8).

Proof. By the proof of Theorem 8.2.6, Γ(G) ≤ ⌈d∗ + 1/2⌉, we obtain
(8.9) with Proposition 3.2.2.

Consider a graph with five vertices and six edges (with no isolated
vertex for a fair comparison). Equation (8.8) yields an arboricity bound
of 3, while our bound yields 2. Hence, our bound is tighter on this
instance.

8.4 bounds for arboricity and pseudoarboricity 117

Let us now show for all graphs that the right-hand side of (8.9) is at
most the right-hand side of (8.8).

For any |E| ≥ 0 we can write |E| = n(n− 1)/2 for a unique n ∈ R+.
Then |V| ≥ n because no graph can have greater density than a
complete graph. This means that⌈︄√︃

|E|
2

+
|V|
4

⌉︄
≥
⌈︄√︃

n(n− 1)
4

+
n
4

⌉︄
=
⌈︂n

2

⌉︂
.

Now consider bound (8.9). We have⌈︄√︃
|E|
2

+
1
16

+
1
4

⌉︄
=

⌈︄√︃
n(n− 1)

4
+

1
16

+
1
4

⌉︄

=

⌈︄√︃
n2 − n + 1/4

4
+

1
4

⌉︄

=

⌈︄√︃
(n− 1/2)2

4
+

1
4

⌉︄

=

⌈︃
n− 1/2

2
+

1
4

⌉︃
=
⌈︂n

2

⌉︂
.

Gabow and Westermann provided bounds for arboricity and pseu-
doarboricity by considering matroid partitions.

Theorem 8.4.3 ([Wes88; GW92]). Let G = (V, E) be a simple graph with
|E| ≥ 1. Then

p(G) ≤
⌊︃√︂
|E|/2− 7/16 + 3/4

⌋︃
, (8.10)

Γ(G) ≤
⌊︃√︂
|E|/2− 7/16 + 5/4

⌋︃
. (8.11)

The arboricity bound was further improved by Dean et al.

Theorem 8.4.4 ([DHS91]). Let G = (V, E) be a simple graph. Then

Γ(G) ≤
⌈︃√︂
|E|/2

⌉︃
,

and for every |E| ≥ 0, there is a graph (V, E) of arboricity
⌈︂√︁
|E|/2

⌉︂
.

In order to compare bounds, we use the following lemma.

Lemma 8.4.5. Let x > 0. Then for every δ ≤ x, we have

√
x− δ ≤

√
x− δ

2
√

x
, (8.12)

√
x + δ ≥

√
x +

δ

4
√

x
. (8.13)

118 arboricity and pseudoarboricity

For every δ ≤ x/4, we have

√
x− δ ≥

√
x− δ√

x
. (8.14)

Proof. Inequality (8.12) is obtained with elementary calculus. It is
an easy exercise to show that

√
x + δ ≤ √x +

√
δ for x, δ ≥ 0 and√

x− δ ≥ √x−
√

δ for x ≥ δ ≥ 0.
For (8.13), we have for δ ≤ x:

√
x + δ ≥

√
x +

δ

2
√

x + δ
≥
√

x +
δ

2(
√

x +
√

δ)

≥
√

x +
δ

2(
√

x +
√

x)

=
√

x +
δ

4
√

x
.

For (8.14), we have for δ ≤ x/4:

√
x− δ ≥

√
x− δ

2
√

x− δ
≥
√

x− δ

2(
√

x−
√

δ)

≥
√

x− δ

2(
√

x−√x/2)

=
√

x− δ√
x

.

Proposition 8.4.6. For a simple graph G = (V, E) with |E| ≥ 1, the
Gabow–Westermann arboricity bound (8.11) never exceeds the bound (8.9),
and both bounds are at least

⌈︂√︁
|E|/2

⌉︂
.

Proof. Let ΓGW denote the right-hand side of (8.11), and let Γd∗ denote
the right-hand side of (8.9). The claim is true for |E| = 1 by inspection.
For |E| ≥ 2, define ϵ := 1/(32

√︁
|E|/2). Let JxK := x− ⌊x⌋ denote the

digits after the decimal point of x. We have

Γd∗ =

⌈︃√︂
|E|/2 + 1/16 + 1/4

⌉︃
(8.13)
≥
⌈︄√︂
|E|/2 +

1
64
√︁
|E|/2

+ 1/4

⌉︄

=

⎧⎪⎨⎪⎩
⌊︂√︁
|E|/2

⌋︂
+ 2, if

r√︁
|E|/2

z
+ ϵ/2 > 3/4,⌊︂√︁

|E|/2
⌋︂
+ 1, else.

8.4 bounds for arboricity and pseudoarboricity 119

On the other hand, noting 7ϵ < 1/4 we have

ΓGW =

⌊︃√︂
|E|/2− 7/16 + 5/4

⌋︃
(8.12)
≤
⌊︃√︂
|E|/2− 7ϵ + 5/4

⌋︃

=

⎧⎪⎨⎪⎩
⌊︂√︁
|E|/2

⌋︂
+ 2, if

r√︁
|E|/2

z
− 7ϵ ≥ 3/4,⌊︂√︁

|E|/2
⌋︂
+ 1, else.

Since
r√︁
|E|/2

z
− 7ϵ ≥ 3/4 implies

r√︁
|E|/2

z
+ ϵ/2 > 3/4, we

have ΓGW ≤ Γd∗ . That both bounds are at least
⌈︂√︁
|E|/2

⌉︂
follows

from Theorem 8.4.4, but we can prove it easily. It is obvious that
Γd∗ ≥

⌈︂√︁
|E|/2

⌉︂
.

For ΓGW , the claim is verified for |E| ≤ 7 by exhaustion. For |E| ≥ 8,
we have

ΓGW =

⌊︃√︂
|E|/2− 7/16 + 5/4

⌋︃
(8.14)
≥
⌊︄√︂
|E|/2− 7

16
√︁
|E|/2

+ 5/4

⌋︄

≥
⌊︃√︂
|E|/2− 7

32
+ 40/32

⌋︃
=

⌊︃√︂
|E|/2 + 33/32

⌋︃
≥
⌈︃√︂
|E|/2

⌉︃
.

We were unable to prove that Γd∗ never exceeds ΓGW with the
bounds of Lemma 8.4.5. However, we also did not find a counterex-
ample in computational experiments.

Chiba and Nishizeki [CN85] show that the arboricity is bounded
by ⌈|V|/2⌉. Kannan et al. [KNR92] improve this to ⌊∆/2⌋+ 1. Picard
and Queyranne [PQ82] observe that p ≤ ⌈(|V| − 1)/2⌉. We give an
analogous improvement.

Proposition 8.4.7. For a simple graph G we have

p(G) ≤
⌈︃

∆(G)

2

⌉︃
and Γ(G) ≤

⌈︃
∆(G) + 1

2

⌉︃
.

Proof. By Proposition 3.2.3 we know that d∗(G) ≤ ∆(G)/2. The first
bound follows from Theorem 8.2.3. The second bound follows from
Γ(G) ≤ ⌈d∗ + 1/2⌉.

120 arboricity and pseudoarboricity

Note that these bounds can be asymptotically tighter than the
√︁
|E|-

type bounds if the vertices have similar degrees. On the other hand, if
the graph has few vertices with large degree, the

√︁
|E|-type bounds

are tighter.

9
C O N V E R S I O N O F P S E U D O F O R E S T S I N T O F O R E S T S

Far better an approximate answer to the right question [. . .]
than an exact answer to the wrong question[.]

— John W. Tukey, The Future of Data Analysis (1962)

We will further investigate the relationship of forest and pseudo-
forest partitions in this chapter. The proof of Theorem 8.2.4 can be
easily altered in order to show that an acyclic d-orientation can be con-
verted into a partition of d forests. Using the greedy 2-approximation
algorithm from Chapter 7 (but not the one by Asahiro et al.), this
yields a constructive 2-approximation algorithm for arboricity, i.e., the
corresponding forest partition can be constructed within the same
asymptotic runtime. The following theorem shows that it is futile to
hope for better approximations via acyclic orientations and converting
them into forests.

Theorem 9.0.1 ([Bor+17]). The greedy algorithm finds an acyclic orienta-
tion that has the smallest maximum indegree among all acyclic orientations.

The theorem is easily proved with the following lemma.

Lemma 9.0.2 (Implicit in [Bor+17]). An acyclic orientation G⃗ has at least
one sink, a vertex v whose incident edges are all oriented towards v.

Proof. If there is an isolated vertex in G⃗, the claim holds. Otherwise,
start in some nonisolated vertex u. Follow an arbitrary outgoing edge
(u, v) and repeat with v. Once a sink is reached, we are done. If we
never reach a sink, then we must eventually reach an already visited
vertex because there are finitely many vertices. Then, however, we
would have gone in a cycle, a contradiction to the acyclicity of the
orientation.

Proof of Theorem 9.0.1. The orientation produced by the greedy algo-
rithm is acyclic. Let dmax denote the maximum indegree assigned
during the algorithm. Before the first vertex of degree dmax is deleted,
all remaining vertices have degree at least dmax.

Let G⃗∗ denote the acyclic orientation with smallest maximum inde-
gree. The restriction of G⃗∗ on the remaining subgraph is also acyclic,
hence it must have a sink by Lemma 9.0.2. Therefore, G⃗∗ has a ver-
tex of indegree at least dmax. This proves optimality of the greedy
solution.

Using the approximation scheme for pseudoarboricity (Section 4.2
via Theorem 8.2.4), we can approximate the arboricity as a value

121

122 conversion of pseudoforests into forests

within a factor of (1 + ϵ), plus a small additive constant, in time
O(|E| log |V|ϵ−1 log Γ). This is evident from the fact that p ≤ Γ ≤
p + 1 (Theorem 8.2.6). In order to get a corresponding forest partition,
however, we need a conversion algorithm. In the next section, we will
see an optimal conversion.

9.1 conversion by divide-and-conquer

Gabow and Westermann [Wes88; GW92] describe how an edge e can
be inserted into a forest partition (F1, . . . , Fk), if possible. In order
to insert it, the algorithm must possibly move other edges between
the forests to obtain a forest k-partition of F1 ∪ · · · ∪ Fk ∪ {e}. If this
is impossible, it outputs a forest (k + 1)-partition. The runtime of
the algorithm, which is called cyclic scanning, is O(k|V|). We will not
discuss its exact workings.

The runtime can be improved to O(|E|) by the following pre- and
postprocessing: Remove all vertices of degree at most k including their
edges. The number |V ′| of remaining vertices is at most 2|E|/k, for
otherwise the number of edges would exceed |E| by the degree sum
formula. Insertions are now performed with cyclic scanning on the
remainder graph in O(k|V|′) ⊆ O(|E|) per edge. In the end, for each
removed vertex u, let (u, v1), . . . , (u, vl) for l ≤ k be its incident edges.
Insert (u, vi) into Fi. This clearly does not create cycles.

In order to convert k pseudoforests into k + 1 forests, and k if
possible, the authors propose Algorithm 9.1 on the next page. In a
nutshell, the algorithm divides the k pseudoforests into two groups
of ⌊k/2⌋ and ⌈k/2⌉ pseudoforests, recursively converts them into
⌊k/2⌋+ 1 + ⌈k/2⌉+ 1 forests, and then inserts the edges of smallest
forest into the k + 1 others. This is always feasible by Theorem 8.2.6.
Once the recursive procedure has stopped, one tries to insert the
edges of the smallest forest into the k others, which may be feasible
or infeasible. It is possible to show that the time of the insertions is
bounded by O(|E|2/k) in both functions of Algorithm 9.1. Gabow
and Westermann pick an arbitrary forest for insertion. They use the
fact that it has at most 2|E|/k− 1 edges due to their preprocessing,
but it easier to argue with the forest of minimum cardinality1:

In a partition of k + 1 forests, there is at least one forest that has
less than |E|/k edges. This proves the total insertion runtime because
each insertion takes linear time. Thus, for some c > 0, the following
recurrence for runtime T holds:

T(|E|, k) ≤ T(|E1|, ⌊k/2⌋) + T(|E2|, ⌈k/2⌉) + c|E|2/k,

T(|E|, 1) ≤ c|V|.

1 This is done in [Wes88] for Convert, but not Divide.

9.1 conversion by divide-and-conquer 123

Algorithm 9.1: Divide-and-conquer conversion from k pseudo-
forests to k + 1 forests by Gabow and Westermann.
Input: A pseudoforest partition E = P1 ∪̇ · · · ∪̇ Pk of a simple

graph G = (V, E).
Output: A forest partition E = F1 ∪̇ · · · ∪̇ Fl with l = k if

possible and l = k + 1 otherwise.
function Convert(P1, . . . , Pk):

(F1, . . . , Fk+1)← Divide(P1, . . . , Pk)

W.l.o.g. let Fk+1 be the forest of smallest cardinality
foreach e ∈ Fk+1 do

if e can be inserted into (F1, . . . , Fk) using cyclic scanning
then

insert e into (F1, . . . , Fk)

Fk+1 ← Fk+1 \ {e}
if Fk+1 = ∅ then

return (F1, . . . , Fk)

else
return (F1, . . . , Fk+1)

function Divide(P1, . . . , Pk):
if k = 1 then

if P1 is a forest then
return (P1, ∅)

else
M← select one edge on every cycle in P1

return (P1 \M, M)

(F1, . . . , F⌊k/2⌋+1)← Divide(P1, . . . , P⌊k/2⌋)
// |E1| = |F1 ∪̇ · · · ∪̇ F⌊k/2⌋+1|
(F⌊k/2⌋+2, . . . , Fk+2)← Divide(P⌊k/2⌋+1, . . . , Pk)

// |E2| = |F⌊k/2⌋+2 ∪̇ · · · ∪̇ Fk+2|
W.l.o.g. let Fk+2 be the forest of smallest cardinality
foreach e ∈ Fk+2 do

insert e into (F1, . . . , Fk+1) using cyclic scanning // this

insertion is always feasible

return (F1, . . . , Fk+1)

124 conversion of pseudoforests into forests

Without giving a proof, Gabow and Westermann claim that its runtime
T(|E|, k) is in O(|E|2/k log k). If we try to prove this by induction with
the ansatz

T(|E|, k) ≤ c′|E|2/k log k

for some c′ > 0, we see that we obtain 2c′|Ei|2/k log(k/2) from each
recursive call T(|Ei|, k/2) by the induction hypothesis, as 1/(k/2) =
2/k. While c′ can be made arbitrarily large, it has to be a constant
that is valid on all levels of the recursion. Hence, we think that the
proof the authors had in mind is incorrect. This may be due to the
fact that they wrote n′ = min(n, 2m/k) and thus hid the k from view,
and also did not introduce a constant c for the non-recursive term in
the recurrence relation. Fortunately, the runtimes stated in [GW92,
Table 1] are unaffected.

The analysis of O(|V|2k log k) in [Wes88; GW92] is correct: We
obtain c′|V|2k/2 log(k/2) from each call T(|Ei|, k/2) by the induction
hypothesis. However, it is unclear why this estimate was used at
all: As k ≥ |E|/|V|, the runtime O(|V||E| log k) that is immediate
from Westermann’s thesis [Wes88, Equation (1) on page 46] is better
and in turn, the alleged runtime O(|E|2/k log k) would have been
even better. Let us finish the discussion by stating the recurrence for
O(|V||E| log k):

T(|E|, k) ≤ T(|E1|, ⌊k/2⌋) + T(|E2|, ⌈k/2⌉) + c|V||E|,
T(|E|, 1) ≤ c|V|.

The fact that every forest has less than |V| edges simplifies the discus-
sion, and the runtime analysis by induction is straightforward. We
note that instead of inserting the edges one-by-one, one could try
using the batch routine of [Wes88; GW92].

Theorem 9.1.1 (Implicit in [Wes88; GW92]). A pseudoforest k-partition
can be converted into a forest (k + 1)-partition, and a forest k-partition if
possible, in O(|V||E| log k) time.

When we apply this conversion after Kowalik’s approximation
scheme for a constant ϵ, the conversion clearly dominates the run-
time. Therefore, Kowalik [Kow06] asked whether a fast conversion
of k pseudoforestst into ck forests exists for some 1 < c < 2. We will
answer this in the affirmative in the following section.

From the knowledge of the existence of a pseudoforest k-partition,
one can solve the k-forests and (k + 1)-forests problem from scratch
using the algorithms in [Wes88; GW92], which can be faster or slower
than O(|E||V| log k) depending on |E|/|V| and k. The best general
runtime is achieved with Gabow’s algorithm for arboricity (Theo-
rem 8.3.3). We will develop a near-linear time algorithm for every k in
Chapter 10.

9.2 linear-time conversions for small k 125

9.2 linear-time conversions for small k

We will describe conversions from k pseudoforests to k + 1 forests for
k ≤ 3 in this section.

Definition 9.2.1. Let (V, P) be a pseudoforest. For every cycle C ⊆ P,
select one edge eC ∈ C arbitrarily. The set

M =
⋃︂

C⊆P
C cycle

{eC}

is called a P-matching.

It is easy to verify that such an M is indeed a matching: Every vertex
is in at most one cycle, and there is at most one cycle per connected
component.

Lemma 9.2.2. A pseudoforest (V, P) can be partitioned into a forest and a
P-matching in linear time.

Proof. Determine all cycles in (V, P) in linear time, for example with
depth-first search. Arbitrarily select an edge on each cycle to obtain a
P-matching M. P \M is a forest.

The lemma implies that a pseudoforest k-partition can be converted
into a forest 2k-partition in linear time. As the greedy algorithm is a
constructive 2-approximation algorithm, this itself is not very useful.

We call an algorithm that turns a pseudoforest k-partition into a
forest ⌈ck⌉-partition for some c > 1 a c-conversion. We will exploit the
matching property in the following subsection to obtain a linear-time
5/3-conversion.

9.2.1 A Linear-Time 5/3-Conversion

We can employ a lemma by Duncan, Eppstein and Kobourov for a
first result.

Lemma 9.2.3 ([DEK04]). Let G be a simple graph with ∆(G) ≤ 3. Then
G can be partitioned into two linear forests in linear time.

Proposition 9.2.4. A pseudoforest partition (P1, P2, P3) can be converted
into a partition of five forests, two of which are linear forests, in linear time.

Proof. To convert (P1, P2, P3) into five forests, first partition each Pi
into a forest Fi and a Pi-matching Mi according to Lemma 9.2.2, which
is possible in linear time.

Next, consider the graph on V with edge set M1 ∪M2 ∪M3. Clearly,
it has maximum degree three. Thus it can be partitioned into two
linear forests by Lemma 9.2.3 in linear time.

126 conversion of pseudoforests into forests

e

e′

(a) A PA-matching (dashed) in PA. (b) A PB-matching (dashed) in PB.

e

(c) The union L of the PA- and PB-
matchings.

e′

(d) L after an exchange of edges e, e′.
It is a linear forest.

Figure 9.1: Converting two pseudoforests into two forests and a linear forest.

This implies that a partition of k pseudoforests can be converted
into ⌈5k/3⌉ forests in linear time. Better conversion algorithms will
be developed in the following subsections, which use the fact that
the matching edges are from different connected components in the
pseudoforests.

9.2.2 A Linear-Time 3/2-Conversion

We now develop a conversion procedure by choosing the edges on the
cycles more carefully. The following lemma is trivial, but crucial to all
algorithms to follow.

Lemma 9.2.5 ([Gal79]). Let G be a simple graph with ∆(G) ≤ 2. Then
every connected component of G is either a path or a cycle.

Theorem 9.2.6. There is a linear-time conversion of a pseudoforest partition
(PA, PB) into a partition of two forests A, B and a linear forest L whose edges
are from PA and PB alternatingly.

Proof. Convert PA and PB into forests A, B and a PA-matching MA and
a PB-matching MB as in Lemma 9.2.2. Let L = MA ∪MB. An example
can be seen in Figure 9.1abc. Every vertex in L has a degree of at
most two. By Lemma 9.2.5, (V, L) can only consist of paths and (even-
length) cycles, their edges must be from MA and MB alternatingly.
Determining all cycles is possible in linear time.

We now modify L by processing the cycles one after another in
steps. Consider some cycle Z ⊆ L, and pick an arbitrary edge e ∈ Z
(Figure 9.1c). Without loss of generality, let this edge be from PA.

9.2 linear-time conversions for small k 127

Figure 9.2: Inserting a PC-matching (dashed edges) into the linear forest L
obtained from Theorem 9.2.6 (isolated vertices not shown) could
create many interlocked cycles.

Adding it to A would re-create the original cycle Ce ⊆ PA with e ∈ Ce.
Let e′ ∈ Ce be adjacent to e in PA (Figure 9.1a). Swap e and e′. The
modified set A′ = (A ∪ {e}) \ {e′} is a forest, and the modified set
L′ = (L∪ {e′}) \ {e} is the union of a PA- and a PB-matching and thus
still consists of paths and cycles by Lemma 9.2.5.

The edge e′ ̸= e cannot link two vertices on Z \ {e} in L′ because
this would imply a vertex of degree three and thus a contradiction.
Therefore, the path Z \ {e} must have been joined at one of its end-
points to another component of L upon insertion of e′ (Figure 9.1d).
Again, as vertices have degree at most two, and the other components
were not affected by the replacement, the vertex e′ links to must have
been the end of a path before the replacement. Thus the number of
cycles in L′ is one less than in L.

By breaking up cycles one by one and joining them to paths at their
ends, we postprocess L to become a linear forest while maintaining
the forest property for A and B. The whole process takes linear time
because we only determine cycles once in L.

Note that exchanging an edge e for a non-adjacent edge e′ on the
original cycle could link two end vertices of the same path in L and
thereby create a new cycle. An example is the squiggly edge in
Figure 9.1a.

Theorem 9.2.6 implies a conversion into ⌈3k/2⌉ forests in linear
time. In the next subsection, we will exploit properties of L to improve
the conversion ratio further.

9.2.3 A Linear-Time 4/3-Conversion

In this section, we will show how a pseudoforest 3-partition can be
converted into a forest 4-partition in linear time. A first observation is
that the linear forest L constructed in Theorem 9.2.6 is size-bounded:
A pseudoforest can have at most |V|/3 cycles because the smallest uni-
cyclic component is a ‘triangle’, i.e., the complete graph K3. Therefore,
the linear forest L has at most 2|V|/3 edges.

If we tried to combine matchings from three pseudoforests into a
set S, it would have |S| ≤ |V|. There are instances where exactly |V|
edges are chosen, e.g., three pseudoforests on twelve vertices, each

128 conversion of pseudoforests into forests

consisting of four triangles. As a forest has at most |V| − 1 edges, the
set S cannot be a forest then, regardless of which edges we choose on
the cycles! In terms of size, a surplus of one edge is not necessarily a
problem, as inserting a single edge into a forest partition is possible
in linear time [GW92] (see also Section 9.1). However, S could have
many interlocked cycles (see Figure 9.2 for an example).2

The intuition behind our approach is as follows. For three pseudo-
forests PA, PB, PC, we try to insert a PC-matching M into L, which is
obtained from PA and PB as in Theorem 9.2.6.

The key property we want to exploit is that the MA-edges of L
are from different connected components of PA, the same holds for
MB-edges with PB. Hence, if L is too full to insert an edge of M, we
can hope to insert it between two components of A or B: If for an edge
(u, v) ∈ M, there are two edges incident to u and at least one edge
incident to v in L, then (u, v) links two connected components in A
or B, or both, depending on which pseudoforest(s) the incident edges
come from. Hence inserting (u, v) cannot create a cycle.

It is, however, possible that connected components in A or B become
linked in a cycle by several such M-edges. This will be resolved by
moving a certain edge of L to C, which allows inserting one carefully
chosen M-edge that created the cycle in A or B into L.

As an isolated vertex u can be linked to a tree without creating a
cycle, an M-edge with such an endpoint u can always be inserted into
L.

The remaining case is where an M-edge links two vertices in L of
degree one, i.e., end vertices of paths. The subcase where the adjacent
L-edges are from different pseudoforests is problematic, because then
the M-edge does not necessarily link different connected components
in A or B. In the following lemma, however, we will take care of all
M-edges linking end vertices of paths.

Lemma 9.2.7. Given a pseudoforest partition (PA, PB, PC), let A, B, L be as
in Theorem 9.2.6. Then a PC-matching M can be computed in linear time
such that (V, L ∪M1) is a linear forest for

M1 = {(u, v) ∈ M | degL(u) = 1 = degL(v)}.

Proof. Choose an arbitrary PC-matching M in linear time. Consider
the set M1 as defined in the theorem. As the degrees in L ∪M1 are
bounded by two, its connected components are paths and cycles by
Lemma 9.2.5. A cycle can only arise if M1-edges link paths in a cycle
at their end vertices (possibly a single path). An example can be seen
in Figure 9.3a on the facing page.

With respect to M1, the paths of L behave essentially like the vertices
of L in Theorem 9.2.6. We modify the choice M. It is possible to detect

2 We note that we tried to utilize proven cases of the Strong Nine Dragon Tree Con-
jecture (see Subsection 9.2.4) for d∗ < 4/3 [Mon+12] and d∗ < 3/2 [Kim+13], to no
avail.

9.2 linear-time conversions for small k 129

v3

v2

w1

v1

w3

w2

u3

u2

u1

(a) The linear forest
L with M1-edges
(dashed) and edges of
M \M1 (dash-dotted).

v3

v2

w1

v1

w3

w2

u3

u2

u1

(b) The pseudoforest PC.
Adjacent edges se-
lected for an exchange
are indicated in bold.

v3

v2

w1

v1

w3

w2

u3

u2

u1

(c) L after the exchanges.
It remains a linear for-
est after adding M′1-
edges (dashed).

Figure 9.3: Dealing with M1-edges in the proof of Lemma 9.2.7.

cycles in L ∪M1 in linear time. For each such cycle Z, pick one edge
(u, v) ∈ M1 ∩ Z. This edge is from a cycle in PC. Exchange it with
an adjacent edge on the original cycle in PC, say (v, w) (Figure 9.3bc).
This modified set M′ is also a PC-matching. Define M′1 analogously to
M1. We now argue that L ∪M′1 is acyclic and hence a linear forest.

If one or several paths of L have been joined to form a cycle Z
in L ∪M1, then one of these paths has one end vertex u that is not
incident to any edge of M′1. Hence, the cycle has been broken into
a path of linked-together paths, which is attached at end vertex v
to a vertex w of some path, while end vertex u now has no incident
M-edge. If w is an end vertex of a path, this path was not part of a
cycle, in particular Z. Hence, the paths of Z are linked end-to-end to a
sequence of paths, i.e., no new cycle is introduced. If w is an internal
vertex of a path (w1 in Figure 9.3bc), then (u, w) /∈ M′1, hence it cannot
be part of a cycle in L ∪M′1. (We will shortly see how to deal with
such edges.)

Equipped with Lemma 9.2.7, we can now attack the M-edges that
link connected components in A and B.

Theorem 9.2.8. A pseudoforest partition (PA, PB, PC) can be converted into
a partition of four forests, one of which has maximum degree at most three,
in linear time.

130 conversion of pseudoforests into forests

(a) The linear forest L with M2 super-
imposed (dashed).

eZ

(b) Pseudoforest PA with MA
2 (dashed).

PA ∩ L is shown in bold.

eZ

(c) The edge eZ links two cyclic con-
nected components of PC, and thus,
C.

mZ

(d) After removing the eZ from L, the
MA

2 -edge mZ can be inserted into
L.

Figure 9.4: Dealing with M2-edges in the proof of Theorem 9.2.8.

Proof. Turn (PA, PB) into two forests A, B and a linear forest L ac-
cording to Theorem 9.2.6. Apply Lemma 9.2.7 to obtain the special
PC-matching M. Define C := PC \M and

M0 := {(u, v) ∈ M | degL(u) = 0},
M1 := {(u, v) ∈ M | degL(u) = 1 = degL(v)},
M2 := {(u, v) ∈ M | degL(u) = 2, degL(v) ≥ 1}.

We have M = M0 ∪̇ M1 ∪̇ M2. We know that L ∪M1 is a linear forest.
Consider the set M2 (see Figure 9.4a for a running example). As

three or four L-edges are adjacent to each (u, v) ∈ M2, at least two of
them must be from the same pseudoforest. We can hence partition M2

into

M2 = MA
2 ∪̇ MB

2

such that for every (u, v) ∈ MA
2 , there exist (t, u), (v, w) ∈ L ∩ PA, and

likewise for MB
2 . (The partition need not be unique.) The following

discussion is analogous for PB, B and MB
2 .

Every (u, v) ∈ MA
2 links two different cyclic connected components

in PA and hence two different components in A (Figure 9.4b). Linking
occurs only at the endpoints of edges e ∈ PA \ A = PA ∩ L (indicated
in bold in Figure 9.4b).

Therefore, components of A behave like vertices that have at most
two incident MA

2 -edges. In this contracted view, there are only paths
and cycles according to Lemma 9.2.5. Inside the components, cycles
of A ∪MA

2 go through exactly the edges of A that were part of a cycle
in PA. It is possible to determine all cycles of A ∪MA

2 in linear time.
For every such cycle Z, consider one arbitrary edge eZ ∈ PA ∩ L that

9.2 linear-time conversions for small k 131

‘shortcuts the cycle’, i.e., it is an edge chosen from PA for L that is
adjacent to two MA

2 edges (the squiggly line in Figure 9.4b). This
implies that eZ links two cyclic connected components in PC, and
hence two components in C (Figure 9.4c). Let YA denote the set of all
such edges eZ (YB is analogously defined). The goal is to remove all
edges YA from L to make room for one MA

2 -edge mZ on each cycle
Z in A ∪MA

2 (Figure 9.4d). By removing one such edge per cycle of
A ∪MA

2 , its forest property is restored. Let XA and XB denote the sets
of the mZ for A and B, respectively. We will later carefully choose the
X- and Y-sets such that (L ∪M1 ∪ XA ∪ XB) \ (YA ∪YB) is acyclic.

Add YA ∪ YB to C and, only for the sake of argument, also to PC.
Thereby, cyclic connected components of PC are linked via YA-edges
and YB-edges, and these must be incident to the endpoints of the
MA

2 -edges.

Claim 9.2.9. A PC-component is linked via at most one YA-edge in PC ∪
YA ∪ YB. Moreover, if it is linked via a YA-edge, then it is not linked via a
YB-edge. The claim holds analogously with the roles of YA and YB reversed.

Proof of Claim 9.2.9. If a component in PC became linked by two differ-
ent edges of YA, then these two edges would share an adjacent MA

2 -
edge. Hence, they would shortcut the same cycle in PA ∪MA

2 . This is
a contradiction to the selection of exactly one edge eZ on such a cycle.
The ‘moreover’-part of the claim follows from MA

2 ∩MB
2 = ∅.

This implies that every component of C is isolated or linked to a
single other component in C ∪YA ∪YB. As the components are trees,
the set C ∪YA ∪YB is acyclic for any specific choice of YA and YB.

We now choose which edges XA ⊆ MA
2 are inserted into L ∪M1,

and which edges YA ⊆ A are removed from L.
For every cycle Z of A ∪ MA

2 , consider the endpoints of the MA
2 -

edges. If we remove an edge eZ ∈ PA ∩ L from L ∪ M1, the path
disconnects into two paths (trees). If eZ has an endpoint uZ whose
degree in L is one, the MA

2 -edge incident to uZ can be inserted into
(L \ {eZ}) ∪M1. If both endpoints have degree two in L, it is possible
that adding either of the two incident MA

2 -edges on Z to L∪M1 creates
a cycle. We would need to choose an MA

2 -edge on Z that ‘bridges the
gap’, i.e., that connects the two different trees.

We describe a simple general way of choosing an edge eZ together
with an adjacent MA

2 -edge that also allows for a simple analysis of
acyclicity: Number the vertices from 1 to n such that every path of
L ∪M1 consists of a contiguous segment of the sequence (1, . . . , n). In
other words, the paths are arranged in a sequence from left to right.
This is possible in linear time. We view edges (u, v) ordered as u < v.

Among the edges (u, v) ∈ PA ∩ L that shortcut a cycle Z in PA ∪MA
2 ,

choose ‘the rightmost’ as eZ, i.e., the one that maximizes v. One of the
two adjacent MA

2 -edges is mZ = (t, v) with t < u, which we add to
(L \ {eZ} ∪M1) (these are the choices in Figure 9.4 when the path is

132 conversion of pseudoforests into forests

ordered from left to right). These edges can be determined in linear
time in total by scanning each Z once for the rightmost shortcut edge,
and selecting the appropriate adjacent MA

2 -edge. We now prove that
performing all these deletions and insertions does not create a cycle.

Claim 9.2.10. For the above specific choices of XA, YA, XB and YB, (L ∪
M1 ∪ XA ∪ XB) \ (YA ∪YB) is a forest.

Proof of Claim 9.2.10. We order the edges eZ = (u, v) in YA ∪ YB by
their right endpoint v, and imagine the process of deleting them from
L∪M1 and adding their adjacent edge mZ = (t, v) ∈ XA ∪XB in order
of decreasing v (‘from right to left’).

We prove by induction on i ≥ 0 that after the i-th deletion of
eZ = (u, v) and insertion of mZ = (t, v), the graph is a forest. For
every i, let Mi

2 ⊆ M2 denote the edges of XA ∪XB inserted in iterations
1, . . . , i, and let Li denote L without the edges of YA ∪YB removed in
these iterations. Before the first insertion and deletion, L ∪M1 is a
linear forest (i = 0).

Let the induction hypothesis hold for some i ≥ 0. After deleting
the (i + 1)-th edge eZ = (u, v), the tree of Li ∪M1 ∪Mi

2 that eZ was a
part of becomes disconnected into two different trees, one of which
contains u and the other v. The edge mZ = (t, v) has t < u. We
have to show that inserting mZ would not create a cycle. This could
only happen if t were in the same tree as v. Assume this were the
case. Then there is a unique path P ⊆ (Li \ {eZ}) ∪M1 ∪Mi

2 from v
to t. Note that the first edge must be from L, and no two consecutive
edges of this path can be from M1 ∪Mi

2 because it is a matching. (In
particular, v cannot be isolated now.) Recall that we ordered the paths
including the M1-edges. As we deleted (u, v), P must pass through
at least one edge e = (x, y) ∈ Mi

2 with v < y. Follow the path from
v to t until the e with maximum y is visited. By construction, its left
incident edge (y− 1, y) that was from L originally was deleted. Hence,
there must be an (x′, y′) ∈ Mi

2 on P with v < y < y′ in order to reach
t < v. This is a contradiction to y being maximum.

Note that (L ∪ M1 ∪ XA ∪ XB) \ (YA ∪ YB) may have vertices of
degree three.

Lastly, we consider the set M0. Clearly, an isolated vertex u can
be linked to a tree of (L ∪M1 ∪ XA ∪ XB) \ (YA ∪YB) via (u, v) ∈ M0

without creating a cycle. (This may also cause vertices of degree three.)
As M = M0 ∪̇ M1 ∪̇ M2, this concludes the proof.

Theorem 9.2.11. Let G be a simple graph. A partition of G into k pseudo-
forests can be converted into a partition of ⌈4k/3⌉ forests in linear time.

Proof. Divide the pseudoforests into ⌊k/3⌋ triplets and convert each
triplet into four forests as in Theorem 9.2.8. If k is divisible by three, the
claim follows. If k ≡ 1 mod 3, we convert the remaining pseudoforest

9.2 linear-time conversions for small k 133

into two forests. If k ≡ 2 mod 3, we convert the two pseudoforests
into three forests according to Theorem 9.2.6. The claim follows.

We can now give a near-linear time algorithm with an approxima-
tion factor of (4/3+ ϵ) with a small additive constant due to rounding.

Theorem 9.2.12. For every fixed ϵ > 0, a simple graph G = (V, E) can be
partitioned into at most

⌈4/3 · ⌈(1 + ϵ)d∗(G)⌉⌉

forests in O(|E| log |V|) time.

Proof. Use Theorem 7.3.1 to obtain the approximate pseudoforest
partition for ϵ > 0. Then apply Theorem 9.2.11.

It seems difficult to obtain a linear-time conversion from four pseu-
doforests to five forests because we lost linearity of the forest in the
proof of Theorem 9.2.8 and moved edges between A, B and C. As
a follow-up to our result, Fischer3 suggested that the approach can
be generalized to k forests with a runtime of O(|E|k2α(|V|)) (see Sec-
tion 2.3 for the definition of α, which can be regarded as constant
for all practical purposes). This claim would imply a constructive
approximation scheme for the arboricity.

In a combined effort, we elaborated on Fischer’s roadmap. This
indeed lead to a constructive approximation scheme for the arboricity,
which will be the subject of the next chapter. In fact, the runtime of
the conversion is better than what was hoped for.

9.2.4 The Nine Dragon Tree Theorem

We note the following pattern in the results of the previous sections:
One of the constructed forests, say Fk+1, has ∆(Fk+1) ≤ 1 in the con-
version from one pseudoforest, ∆(Fk+1) ≤ 2 from two pseudoforests,
and ∆(Fk+1) ≤ 3 from three pseudoforests. Our (slightly slower) al-
gorithm in the next chapter for any k ∈ N0 even outputs a forest
(k + 1)-partition where the sizes of the connected components in Fk+1
are at most k. These observations may be related to a known result in
graph theory.

Imagine a graph G has γ(G) = 5.9 and some other graph H (e.g.,
a proper subgraph of G) has γ(H) = 5.1, then Γ(G) = 6 = Γ(H).
Intuitively speaking, one may wonder if it is possible to identify one
forest in the partitions with the fractional part of γ: The forest number
FΓ in the partition of H could be more ‘restricted’ than in the partition
of G. Montassier et al. [Mon+12] conjectured the following ‘Nine
Dragon Tree Conjecture’, of which they, Kim et al. [Kim+13] and Chen
et al. [Che+17] proved special cases. The full conjecture was proved
only recently by Jiang and Yang.

3 Frank Fischer, personal communication, November 2018.

134 conversion of pseudoforests into forests

Figure 9.5: A graph with d∗ > 1 and γ ≤ 1 + 1
3 .

Theorem 9.2.13 (Nine Dragon Tree Theorem, [JY17]). Let G be a simple
graph. Let k, d ∈N. If

γ(G) ≤ k +
d

k + d + 1
,

then G can be partitioned into k + 1 forests, one of which has maximum
degree d.

The resemblance to the degree bound of our construction is striking
for d = k. Our algorithm constructs p + 1 = ⌈d∗⌉+ 1 forests from
a pseudoforest p-partition (unless all pseudoforests are forests), so
Γ = p + 1 would be a necessary condition to prove the theorem for
d = k via our construction. One might think from Lemma 8.2.9 and
Corollary 8.2.10 that if k ≤ γ ≤ k + k

2k+1 , i.e., the fractional part is
small, then d∗ ≤ k and thus p = ⌈d∗⌉ ≤ k as desired.

Unfortunately, there are graphs where γ ≤ k + k
2k+1 , yet Γ = p. As

an example, consider the graph in Figure 9.5. While it has d∗ = 9/8,
and hence p = 2, it has γ = 4/3 ≤ 1 + 1

1+1+1 , and hence Γ = 2. Of
course, it could be the case that such counterexamples only exist for
certain γ, or that our algorithm can be improved.

Fan et al. prove the following analog to the Nine Dragon Tree
Theorem for the maximum density.

Theorem 9.2.14 ([Fan+15]). Let G be a simple graph. Let k, d ∈N. If

d∗(G) ≤ k +
d

k + d + 1
,

then G can be partitioned into k + 1 pseudoforests, one of which has maxi-
mum degree d.

Montassier et al. [Mon+12] give a stronger variant of the Nine
Dragon Tree conjecture.

Conjecture 9.2.15 (Strong Nine Dragon Tree Conjecture). Let G be a
simple graph. Let k, d ∈N. If

γ(G) ≤ k +
d

k + d + 1
,

then G can be decomposed into k + 1 forests, one of which has at most d
edges in every connected component.

This reduces to the Nine Dragon Tree Theorem for k = d = 1. The
special case k = 1, d = 2 is proved by Kim et al. [Kim+13].

9.2 linear-time conversions for small k 135

9.2.5 An Application to Planar Graphs

Schnyder [Sch90] and Chrobak and Eppstein [CE91] show that a planar
graph can be partitioned into three forests4 in O(|V|) time from an
embedding of the graph into the plane (which can also be computed
in linear time, see [HT74]). The algorithm of Grossi and Lodi [GL98]
finds, also using an embedding, a partition into three forests in time
O(|V| log |V|), and four forests in O(|V|). By using the second 3-
orientation algorithm of [CE91] and converting it to a pseudoforest
3-partition (see Theorem 8.2.4), we can obtain four forests in linear time
by applying Theorem 9.2.11 without computing an embedding first. Note
that there are planar graphs with pseudoarboricity three. Chrobak
and Eppstein [CE91] also note that an acyclic 5-orientation can be
computed in linear time, which is in fact achieved by the greedy
algorithm (Section 7.1) because every planar graph has a vertex of
degree at most five.

9.2.6 Partitioning a Planar Graph into Three Forests

In this subsection, we will review the linear-time algorithm of Chrobak
and Eppstein [CE91] for partitioning a planar graph into three forests.
The algorithm was stated as a 3-orientation algorithm, its forest par-
titioning capability was only given as a remark. We now give a full
proof adapted to forests.

The vertices that lie on the outer face of the graph are called external
vertices. We denote the membership to the three forests by colors red,
blue and black.

Theorem 9.2.16 ([Sch90; CE91]). Let G = (V, E) be a planar graph. Then
G can be partitioned into three forests in linear time.

Proof. Without loss of generality, we assume G is connected. Find
an embedding of the graph into the plane in linear time [HT74]. We
will prove the following claim by induction on the number of vertices,
which yields the theorem.

Claim. The edges of G can be partitioned into the red, blue, and black forests
such that no two external vertices are in the same tree in the black forest.

The claim obviously holds for a single vertex. Now let |V| ≥ 2.
There is at least one external vertex that has at most two external
neighbors. Let u be such an external vertex. By the induction hypoth-
esis, G′ = G[V \ {u}] has a coloring such that no two external vertices
are in the same tree in the black forest.

4 That a planar graph has arboricity at most three can be proved from Euler’s formula
[CN85; Wes88]. Gonçalves proves that one of the forests can be restricted to maximum
degree four [Gon09], and hence a partition into two forests and two linear forests is
possible.

136 conversion of pseudoforests into forests

Let v and (if present) w denote the external neighbors of u in G.
Color the edge uv red and uw blue. This amounts to linking the
vertex u to a single tree in the red and (possibly) blue forests, hence
they remain forests. Consider the external vertices v1, . . . , vk (k ≥ 0)
of G′ that are not external in G and connected to u in G via edges
(u, v1), . . . , (u, vk). Color these edges black. As the v1, . . . , vk were in
different trees of the black forest, these are joined to a single larger
tree via u.

As v and w were not in the same tree of the black forest, this is still
the case, and they are also not in the black tree u is contained in now.
Any external vertex t /∈ {v, w} of G′ that is also external in G has not
been touched and hence the claim holds for G.

The proof is easily converted into a recursive algorithm. Its runtime
analysis is identical to the first 3-orientation algorithm of [CE91].

An example can be seen in Figure 1.3b on page 3, where the algo-
rithm derived from above proof starts at the top vertex and proceeds
counterclockwise.

We note that if the graph can be partitioned into two forests, the
algorithm may return three forests. This is the case for the complete
graph K4. It is an interesting open question how a partition into two
forests can be determined in linear time, if possible. The 3-partitioning
algorithm of Grossi and Lodi [GL98] also does not seem to achieve
this.5

5 Roberto Grossi, personal communication, December 2018.

10
A C O N S T R U C T I V E A R B O R I C I T Y A P P R O X I M AT I O N
S C H E M E

In this chapter, we will devise a constructive approximation scheme
for the arboricity problem.

Theorem 10.0.1. For every ϵ > 0, a simple graph can be partitioned into
at most ⌈(1 + ϵ) · ⌈(1 + ϵ)d∗⌉⌉ forests in O(|E| log |V| log Γ ϵ−1) time.
Furthermore, if ϵ is fixed, the runtime can be bounded as O(|E| log |V|).

The proof uses generalizations of the ideas from the previous chap-
ter for a fast conversion of k pseudoforests into k + 1 forests: Lem-
mata 10.1.1, 10.1.2 and 10.2.1, which are due to Fischer.1 Our con-
version also implies a near-exact arboricity algorithm whose runtime
scales with Γ.

Theorem 10.0.2. A simple graph can be partitioned into at most Γ + 2
forests in O(|E| log |V| Γ log∗ Γ) time.

10.1 the surplus graph

Throughout the remainder of the chapter, we maintain the edges E
of the graph as a partition E = F ∪̇ M, where F = F1 ∪̇ · · · ∪̇ Fk
for forests F1, . . . , Fk and M = M1 ∪̇ · · · ∪̇ Mk such that Fi ∪Mi = Pi
is a pseudoforest and Mi is a Pi-matching for i = 1, . . . , k. We call
(F, M) a valid partition of the graph and H = (V, M) its surplus graph.
Initially, a valid partition is obtained by applying Lemma 9.2.2 to each
Pi of a given pseudoforest k-partition. Edges in both Fi and Mi are
considered to have color i. Note that any two adjacent edges of H
must have different colors. By turning H into a forest, i.e., Fk+1, we
will give a constructive proof of Theorem 8.2.6.

We will use a swap operation in order to move edges from H to the
forests F1, . . . , Fk, it is described in the following lemma and illustrated
in Figure 10.1 on the following page.

Lemma 10.1.1. Let (F, M) be a valid partition of a simple graph G, and
let H = (V, M) be its surplus graph. Let (u, v) ∈ M with color i and
(v, w) ∈ M with color j ̸= i. Then one of the following applies.

1. We may swap the colors of (u, v) and (v, w) in H, i.e., modify

Mi ← Mi \ {(u, v)} ∪ {(v, w)},
Mj ← Mj \ {(v, w)} ∪ {(u, v)},

such that (F, M) is still valid.

1 Frank Fischer, personal communication, December 2018.

137

138 a constructive arboricity approximation scheme

u v w
Swap

u v w

(a)

u v w
Swap

u v w

(b)

Figure 10.1: (a) Situation 1. of Lemma 10.1.1. The colors i (red, thick) and j
(blue, thin) of the edges (u, v) and (v, w) are swapped. Dotted
edges represent the forests Fi and Fj. (b) Situation 2. of Lemma
10.1.1. v and w are in different trees of forest Fi (red, thick, dot-
ted), hence the edge (v, w) can be inserted into it after swapping
colors.

2. We may assign color j to (u, v) in H and insert (v, w) into Fi, i.e.,
modify

Mj ← Mj \ {(v, w)} ∪ {(u, v)},
Fi ← Fi ∪ {(v, w)},

such that (F, M) is still valid.

3. Symmetrically to 2., we may assign color i to (v, w) in H and insert
(u, v) into Fj such that (F, M) is still valid.

4. We may insert (v, w) into Fi and (u, v) into Fj such that (F, M) is
still valid.

Furthermore, if there is an edge (w, x) ∈ M of color i, then 2. or 4. applies.

Proof. Since (F, M) is valid, u and v are in the same tree in Fi and
v and w are in the same tree in Fj. Let us swap the colors of (u, v)
and (v, w) in H, i.e., modify Mi and Mj accordingly. We distinguish
several cases:

1. If u and v are in the same tree of Fj, and v and w are in the same
tree of Fi, then after swapping the colors of (u, v) and (v, w),
Mi and Mj are still Pi- and Pj-matchings, respectively. This is
illustrated in Figure 10.1a.

2. If v and w are in different trees in Fi, then Fi ∪ {(v, w)} is a forest.
If u and v are in the same tree in Fj, change the color of (u, v) to
j, now no edge in Mi exists whose endpoints are both in the tree

10.1 the surplus graph 139

of Fi that v is contained in. Since (F, M) had been valid, there
is at most one edge in Mi whose endpoints are both in the tree
of Fi that w is contained in. Hence, after inserting (v, w) into Fi,
there is still at most one such edge for the joined tree. This is
illustrated in Figure 10.1b.

3. If v and w are in the same tree in Fi, and u and v are in different
trees in Fj, we have a case that is symmetric to 2.

4. If v and w are in different trees in Fi, and u and v are in different
trees in Fj, then we can insert (v, w) into Fi and (u, v) into Fi.
(F, M) is easily seen to be valid.

For the ‘furthermore’-claim, we observe that if (w, x) ∈ Mi, then v and
w must be in different trees of Fi because (F, M) is valid.

Lemma 10.1.2. Let a path in the surplus graph H be given by a sequence
of distinct edges (e1, . . . , el) where e1, el ∈ Mi for the same color i. Then we
can modify (F, M) such that the cardinality of M decreases.

Proof. We can move the color i from e1 towards el in a sequence of
swaps using Lemma 10.1.1, i.e., swap the colors of et and et+1 for
t = 1, . . . until one of the cases 2.-4. of Lemma 10.1.1 applies. This
happens at the latest when el−2 has color i, because then we are in the
‘furthermore’-part of Lemma 10.1.1. Thus we can move some edge on
the path from M to F.

A connected component of the surplus graph H is called colorful
if every color appears at most once in it. A surplus graph is called
colorful if all its connected components are colorful. Note that each
component in a colorful surplus graph has at most k edges. We will
exploit this for the runtime analyses in the following sections.

We can implement the swap operation with k union-find data struc-
tures that keep track of the vertex sets of the connected components
of each Fi. An edge (u, v) ∈ H connects two different trees in Fi if
and only if the sets Su = find(u) and Sv = find(v) in the union-find
structure of Fi are different. When (u, v) is to be inserted into Fi, we
call union(Su, Sv) in order to merge Su and Sv.

Since we will be performing O(|E|k) find operations, but only
O(|E|) union operations, we will use the union-find data structure
of [AHU74, Theorem 4.3]. In our scenario, this is better than the
well-known union-find implementation where both find and union
run in O(α(|V|)) amortized time [Tar75] (this is optimal, see [Tar79;
Ban80] and [FS89]).

The data structure uses a list representation of the sets that grants
constant worst-case time for each find operation. A union is performed
by moving the elements of the shorter list to the longer, which implies
that each such element is moved at most log(|V|) times because the
resulting list is at least twice as long as the shorter list. This implies

140 a constructive arboricity approximation scheme

that up to |V| − 1 unions can be performed in time O(|V| log |V|)
[AHU74]. However, if we perform u < |V| − 1 unions in a forest, then
a bound of O(u log |V|) does not hold2, hence we need a modification.

Lemma 10.1.3. Given a forest partition F = (F1, . . . , Fk) of G = (V, E), it
is possible to perform f find and u union operations in F within a runtime
of O(k|V|+ |E|+ f + u log |V|).
Proof. Determine the connected components of each Fi. Assign a
unique label to each such component. We create k union-find data
structures that represent the components of the Fi with these labels
after contracting them, all this is possible in O(k|V|+ |E|). Let |Vi|
denote the number of contracted components in Fi. For v ∈ V, we
record the label of its connected component in each Fi in an array
of size |V| × k in order to be able to look up the labels in constant
time when performing find and union operations. We will implicity
assume this in the remainder of the chapter.

After performing u union operations, we can easily see that every
component of size s ∈N in an Fi was created by s− 1 union operations.
Let l denote the number of non-singleton components in all F1, . . . , Fk.
The sum of the sizes of all such components equals u + l ≤ 2u. Since
each element is moved at most log(|Vi|) ≤ log(|V|) times, the total
cost of these elements in union operations is bounded by O(u log |V|).
Obviously, find operations still take constant time.

Lemma 10.1.4. A colorful surplus graph can be obtained within a runtime
of O(|E|k + |E| log |V|).
Proof. Obtain an arbitrary surplus graph H in linear time, and apply
Lemma 10.1.3. First we need to identify duplicate colors in the com-
ponents of H. The following simplified algorithm is due to Althaus.3

We identify a duplicate color in a connected component of H by per-
forming a depth-first search in it: Record the colors encountered in
the search in a Boolean array of size k. If there is a duplicate color i,
we will encounter one such color and recognize it after at most k + 1
steps of the DFS (without backtracking steps). Otherwise, the search
is unsuccessful and the component already is colorful. The number of
unsuccessful searches is at most |V|.

We can now apply Lemma 10.1.2 to a path of length at most k +
1 from the edge of color i encountered first to the edge of color i
encountered second. We charge the costs of the O(k) find and at
most two union operations to some edge that was removed in the
swap sequence and start the next search. We perform the searches
in each connected component of H until all duplicate colors have

2 Note that we start with already given forests. If a forest has Θ(
√︁
|V|) components

of size Θ(
√︁
|V|), then inserting Θ(

√︁
|V|) edges could incur costs of Θ(|V| log |V|).

The trivial bound of O(k|V| log |V|) for all union operations can be improved to
O(k|V|α(i, |V|)) for every fixed i with the data structure of La Poutré [Pou90].

3 Ernst Althaus, personal communication, February 2019.

10.2 exchanging edges on cycles 141

been eliminated. Note that components may disconnect during the
algorithm. There are at most |E| successful searches. The total cost is
thus O(|E|k + |E| log |V|).

Because the union-find data structures in the above proof do not
store the edges that we insert, we store them and their colors separately
in a list so we can construct the forests Fi in the next algorithm.

10.2 exchanging edges on cycles

In order to remove cycles from a colorful surplus graph H, we want to
replace an edge e in H that is on some cycle in a connected component
C with an edge from some Fi that goes to a vertex outside of C. This
reduces the number of edges that are on at least one cycle in H. After
at most |E| such operations, H will be a forest. To do so, we will insert
e into Fi, and take an adjacent edge on the resulting cycle instead. We
call this the cycle exchange.

First, we store the (uncontracted) forests F1, . . . , Fk in k link-cut tree
data structures [ST81; ST83] in total time O(|V|k + |E| log |V|). In
these structures, each tree is considered to be a rooted tree (which is
stored in a compressed way) with all edges oriented towards the root,
and the root of the tree containing vertex u can be accessed via root(u).
There is an operation evert(u) that makes u the root of its tree. The
operation cut(u) deletes the parent edge of u and thereby splits the
tree. There is an operation link(u,v), where u is a root and v is in a
different tree than u, that makes u point to v. All these operations can
be performed in O(log |V|) amortized time (in fact, worst-case time
[ST83]).4

We will also maintain the union-find structures. The reason for
this is that the vertex sets of the connected components of an Fi do
not change in the cycle exchange. Thus, the union-find structures
still work correctly. It is advantageous to simultaneously keep the
union-find structure for the faster find runtime.

An edge suitable for the cycle exchange can always be found if H
is cyclic. How to determine this edge fast will be shown in the next
section.

Lemma 10.2.1. Let H = (V, M) be a surplus graph, and let C = (VC, EC)

be a colorful cyclic connected component of H. For any v ∈ VC, there is a
color i such that there is an edge of color i in EC, and v has no neighbors in
Fi that are in VC.

Proof. Since C is colorful, exactly |EC| different colors c1, . . . , c|EC | ap-
pear in C. As C is cyclic, we have |EC| ≥ |VC|. If v had a neighbor

4 Note that link-cut trees optimally solve the fully dynamic connectivity problem on
forests: there is no data structure that supports insertion and deletion of edges both
in time o(log |V|), and this holds even with randomization and amortization in the
cell-probe model [PD06].

142 a constructive arboricity approximation scheme

among the vertices VC in every Fi, i = c1, . . . , c|EC |, then v would have
at least |VC| neighbors among VC in G, a contradiction.

We will show in the next section how such an edge can be deter-
mined efficiently.

Lemma 10.2.2. Let H be a colorful surplus graph. If for a vertex v on a cycle
in H a color i as in Lemma 10.2.1 can be determined in time T(k, |V|, |E|)
with P(k, |V|, |E|) preprocessing time, then we can obtain an acyclic colorful
surplus graph in time

O(|E|(T(k, |V|, |E|) + k + log |V|) + P(k, |V|, |E|)).

Proof. We start from a colorful surplus graph H. We can determine
if a connected component C of H is acyclic in time O(k) with DFS.
If it is, there is nothing to be done with it. Otherwise, let (u, v) be
an edge on a cycle. Determine the color i as in Lemma 10.2.1 in time
T(k, |V|, |E|).

Determine a path from the edge of color i in C to v. As in the proof
of Lemma 10.1.4, move i towards (u, v) in a sequence of swaps. If
an edge is removed from H by this, we charge the costs including
the O(k) find and at most two union operations to the removed edge.
We then start looking for cycles again. There can be at most |E| such
removals in H in total.

If no edge is removed from H, then v is now incident to an edge
(u, v) of color i in H. Since (F, M) is valid, we know that inserting
(u, v) into Fi would create a cycle. Make u the root of its link-cut tree in
Fi by calling evert(u), i.e., the link-cut tree represents the tree where all
edges are directed towards u. If (u, v) were to be inserted into this tree,
then it would create a cycle that passes through u and v. Call parent(v)
to obtain an edge (v, w) on this cycle incident to v. By the choice of
i, w /∈ VC, i.e., the edge must leave C in H. Call cut(v) to remove the
edge from the link-cut tree, which breaks it into a tree rooted at u and
the subtree rooted at v. Call link(u, v) to insert the edge (u, v) into
the link-cut tree. As remarked earlier, the union-find structure still
represents the trees of Fi after these changes. The number of edges in
H that are on at least one cycle decreases, which happens at most |E|
times, so the costs for all cycle exchanges amount to O(|E| log |V|) in
total.

C \ {(u, v)} is joined to another colorful connected component of
H via (v, w). We detect and remove duplicate colors in the resulting
component of size O(k) as we did in the proof of Lemma 10.1.4 in
order to keep H colorful. We charge costs to the decrease of |M|
rather than the edges themselves because edges can re-enter M in
cycle exchanges. If no duplicate color is found, we charge the cost of
O(k) to the cycle exchange.

We have now obtained an algorithmic proof of Theorem 8.2.6. In
addition, each connected component of Fk+1 has at most k edges.

10.3 finding the exchange edge 143

10.3 finding the exchange edge

We will describe two ways of finding the exchange edge with a runtime
that does not depend on |V|. The first approach uses the dynamic
data structure of Brodal and Fagerberg [BF99], which stores a graph
of arboricity at most k and hence can be used for F1 ∪ · · · ∪ Fk. In its
more elaborate variant that uses balanced search trees (see Section
4 of [BF99]) for storing adjacencies, it allows querying whether two
vertices are adjacent in time O(log k), inserting an edge in O(log k)
amortized time, and deleting an edge in O(log |V|) amortized time.
The structure can be built for a given graph in O(|E| log |V|+ |V|)
time. In fact, O(|E|+ |V|) is possible.5

The representation used by the data structure is an orientation of
the graph such that every vertex has indegree at most 4k. Every edge
is stored only once, namely in the adjacency list/balanced search tree
of the vertex it points to. Hence, the size of each list/search tree is
O(k). We can store the current color of each edge with it without
affecting the runtimes.

Lemma 10.3.1. In the situation of Lemma 10.2.1, we can determine the
exchange edge in time O(k log k) using the data structure of Brodal and
Fagerberg with O(|V|+ |E|) preprocessing time. All other operations have
the same asymptotic complexity as in Lemma 10.2.2.

Proof. Create the data structure for F1 ∪ · · · ∪ Fk in time O(|V|+ |E|)
(see the remark at the end of Section 10.1). When looking for a cycle
in a component C = (VC, EC) of the colorful surplus graph (with
|VC| ≤ k + 1), we use a Boolean array of size k to mark the colors
of the component and remember the respective edges. When some
vertex v on a cycle has been determined, we test for each u ∈ VC \ {v}
whether (u, v) ∈ E \M in O(log k) with the color-augmented Brodal-
Fagerberg data structure. If the edge is present in some Fi, then we
obtain color i from the data structure and unmark it in the Boolean
array. Once all u ∈ VC \ {v} have been tested, search for a color i that
is still marked: the attached edge is the one we were looking for, i.e.,
v has no neighbors in VC in Fi. All these operations cost O(k log k) in
total.

During the cycle exchange algorithm in Lemma 10.2.2, at most |E|
edges are inserted into the forests F1, . . . , Fk. An edge is only deleted
in a cycle exchange, which happens at most |E| times. Thus, these
cost amount to O(|E|) insertions and deletions in the data structure,
and each such operation costs O(log |V|) amortized time. Hence, the
runtime of Lemma 10.2.2 can indeed be achieved.

We now prove Theorems 10.0.1 and 10.0.2.

5 Recall from the proof of Theorem 4.3.1 that the adjacency lists of a graph can be sorted
in linear time in total. It is then possible to recursively turn each sorted adjacency list
into a balanced binary search tree in linear time.

144 a constructive arboricity approximation scheme

Proof of Theorem 10.0.1. Obtain a pseudoforest K-partition with K ≤
⌈(1 + ϵ)d∗⌉ in time O(|E| log |V| log Γ ϵ−1) with Theorem 4.2.3 via
the conversion of Theorem 8.2.4. For fixed ϵ, this is possible in
O(|E| log |V|) time with Proposition 7.3.1.

We can assume for the remainder that ϵ ≥ 1/K. Let k ≤ K be the
smallest integer such that (k + 1)/k ≤ 1 + ϵ. We have k ∈ O(ϵ−1) and
log k ∈ O(log |V|). In particular, if ϵ is a constant, so is k.

Divide the K pseudoforests evenly into k-tuples of pseudoforests,
if possible, otherwise l ≤ k− 1 pseudoforests remain. Convert each
k-tuple into k + 1 forests and the remaining l pseudoforests into l +
1 forests6 with Lemma 10.2.2 and Lemma 10.3.1. The runtime is
O(|E|k log k + |E| log |V|) ⊆ O(|E| log(|V|)ϵ−1).

Proof of Theorem 10.0.2. Obtain a partition into p + 1 pseudoforests
with Theorem 6.0.2 in O(|E| log |V| p log∗ p) time via the conversion
of Theorem 8.2.4. Using Lemma 10.2.2 and Lemma 10.3.1, we convert
this into a partition of at most p + 2 ≤ Γ + 2 forests in O(|E|p log p +

|E| log |V|) time. The claim follows.

The second approach uses perfect hashing: For the set E edges
from the universe V × V, we construct a perfect hash function and
maintain the set E \ M = F in a hash table and store the current
color information of each edge with it. The perfect hashing scheme of
Fredman, Komlós, and Szemerédi [FKS84] allows worst-case constant
runtimes for querying, insertion, and deletion. Constructing the
perfect hash function is possible in O(|V|2|E|) time, and alternatively
in O(|E|) expected time. The following lemma is proved analogously
to Lemma 10.3.1.

Lemma 10.3.2. In the situation of Lemma 10.2.1, we can determine the ex-
change edge inO(k) time withO(|E|) expected time for preprocessing using
perfect hashing. All other operations have the same asymptotic complexity
as in Lemma 10.2.2.

Lemma 10.3.2 could be useful for the development of a randomized
exact algorithm for arboricity. Recall that Gabow’s algorithm has a
runtime of O(|E|3/2 log(|V|2/|E|)) [Gab98]. Since p ≤ Γ ∈ O(

√︁
|E|),

even in the worst case we can convert k pseudoforests into k + 1
forests in time O(|E|3/2) after constructing the perfect hash function.
Since algorithms for pseudoarboricity are available that run in time
O(|E|3/2

√︁
log log p) and even O(|E|3/2) (Theorems 4.1.4 and 6.0.1 via

Theorem 8.2.4), we would obtain a faster exact algorithm if we can
insert all edges of the constructed (k + 1)-th forest into F1, . . . , Fk fast
enough, if this is feasible. Likewise, a deterministic exact algorithm
with a runtime of O(|E| log |V| Γ log∗ Γ) could then be within reach
using Theorem 10.0.2.

6 In fact, unless (1 + ϵ)K < K + 1 for the original ϵ, we can omit the outer ceiling in
the statement of the theorem by converting one (k + l)-tuple.

11
P R E P R O C E S S I N G O R I E N TAT I O N S

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3%.

— Donald E. Knuth, Structured Programming with go to Statements
(1974)

In this chapter, we give a new conditional runtime estimate for
computing the arboricity and pseudoarboricity. For the latter, this was
published in [Blu16].

Recall from Theorem 8.3.3 that Gabow’s algorithm for arboricity
runs in time

O
(︃
|E|3/2 log

|V|2
|E|

)︃
.

If we could increase the average density of the graph sufficiently, the
logarithmic term would vanish. Bearing this in mind, we next discuss
a preprocessing which does not affect the values ⌈d∗⌉ and γ, but may
decrease the graph size.

In the densest subgraph problem, a vertex can be safely removed
from the graph if its degree is smaller than d∗. This was claimed in
[KP94; KS09a; Nas+17], and we give a rigorous proof. A similar result
holds for the fractional arboricity.

Lemma 11.0.1. ([KP94; KS09a; Nas+17],[TG16]) Let G = (V, E) be a
simple graph. A vertex u with deg(u) < d∗(G) cannot be in a densest
subgraph of G. Furthermore, a vertex u with deg(u) < γ(G) cannot be in
a subgraph in

arg max
(VH ,EH)⊆G
|VH |≥2

|EH |
|VH | − 1

.

Proof. If |E| = 0, we have d∗(G) = 0 and thus the claim holds. If
|E| ≥ 1, a densest subgraph H = (VH, EH) has at least two vertices.
Assume that deg(u) < d∗(G) for some u ∈ VH.

Let (VH′ , EH′) = G[VH \ {u}]. We have

degH(u) ≤ deg(u) < d∗(G) =
|EH |
|VH |

⇔ −|EH | < −|VH |degH(u)

⇔ |VH ||EH | − |EH | < |VH |(|EH | − degH(u))

⇔ |EH |
|VH |

<
|EH | − degH(u)
|VH | − 1

=
|EH′ |
|VH′ |

,

145

146 preprocessing orientations

a contradiction to the assumption that H is a densest subgraph. The
proof for γ is similar, see [TG16, Lemma 6].

We can now repeatedly remove vertices by applying Lemma 11.0.1
without changing the maximum density and the fractional arboricity
of the graph. Note that the average density of a graph may decrease
when a vertex v with deg(v) < d∗ is removed.1

Lemma 11.0.2. Let d ≤ d∗(G) for a simple graph G = (V, E). Then we
can obtain a subgraph G′ ⊆ G with d∗(G′) = d∗(G) and γ(G′) = γ(G)

where degG′(v) ≥ d for all v ∈ V in O(|E|) time.

Proof. Note that d ≤ d∗ implies d < γ(G).
We initialize a queue with all vertices whose degree is less than d,

and store the current vertex degrees. While the queue is not empty, a
vertex u is dequeued. Mark it as removed and decrease the degrees of
all its unmarked neighbors by one. If a neighbor’s degree falls below
d for the first time, add it to the queue. Once the queue is empty, build
the graph induced by the set of unmarked vertices. The algorithm’s
correctness is established by Lemma 11.0.1. It runs in O(|E|) time.

Equipped with a constant-factor approximation algorithm, we can
perform a fast preprocessing with Lemma 11.0.2, which can signifi-
cantly reduce the input size.

Lemma 11.0.3. Let G = (V, E) be a simple graph. Then a subgraph G′ =
(V ′, E′) ⊆ G with d∗(G′) = d∗(G), γ(G′) = γ(G) and |E′| ≥ |V ′| d∗/4
can be obtained in O(|E|) time.

Proof. Compute a 1/2-approximation d∗(G)/2 ≤ d ≤ d∗(G) in time
O(|E|) (see Chapter 7). Obtain the subgraph G′ = (V ′, E′) ⊆ G
from Lemma 11.0.2 with d in time O(|E|). For every vertex v ∈ V ′,
degG′(v) ≥ d ≥ d∗(G)/2. We have

2|E′| = ∑
v∈V′

degG′(v) ≥ |V ′| d∗(G)/2,

thus |E′| ≥ |V ′| d∗(G)/4.

We are now able to prove a new runtime bound for determining ⌈d∗⌉.
Note that if a graph is dense, i.e., |E| ∈ Θ(|V|2), then d∗ ∈ Θ(

√︁
|E|).

The reverse, however, is not true, which is why preprocessing is
needed in the following theorem.2

1 An example for this is the complete graph K6, where we attach a path of four vertices
to some vertex. The average density is 19/10 = 1.9, and d∗ = 15/6 = 2.5. If one
removes a vertex on the path with degree two, then the average density becomes
17/9 < 1.9. However, exhaustively removing vertices is a different matter.

2 To see this, consider a complete graph Kn with a path of length n2 attached to it: the
graph is sparse, but the maximum density is in Θ(

√︁
|E|).

preprocessing orientations 147

Theorem 11.0.4. Let G = (V, E) be a simple graph. If d∗(G) ∈ Ω(
√︁
|E|),

the smallest maximum indegree ⌈d∗⌉ and the arboricity Γ can be determined
in time O(|E|3/2). A subgraph of density greater ⌈d∗⌉ − 1 can be found
within the same runtime.

Proof. If we have d∗ ∈ Ω(
√︁
|E|), then d∗ ≥ c

√︁
|E| for some c > 0.

Obtain G′ = (V ′, E′) as in Lemma 11.0.3, we have

|E′| ≥ |V ′| d∗/4 ≥ |V ′|
√︂
|E| c/4 ≥ |V ′|

√︂
|E′| c/4

⇒ |E′| ≥ |V ′|2 c2/16,

and thus |E′| ∈ Ω(|V ′|2). The arboricity Γ(G′) = Γ(G) (by Theo-
rem 8.2.7) can now be computed in O(|E|3/2) time with Gabow’s
algorithm. By applying Theorem 8.2.6 we obtain

⌈d∗(G)⌉+ 1 =
⌈︁
d∗(G′)

⌉︁
+ 1 ≥ Γ(G′) ≥

⌈︁
d∗(G′)

⌉︁
= ⌈d∗(G)⌉ .

As Γ(G′) has to be either ⌈d∗(G)⌉ or ⌈d∗(G)⌉ + 1, a single test for
Γ(G′)− 1 suffices to determine ⌈d∗⌉ in O(|E|3/2) time, for example
by a test with the bipartite orientation network (see the proof of
Theorem 5.0.1).

A subgraph of density greater ⌈d∗⌉ − 1 can be found with a sin-
gle maximum flow computation on Goldberg’s network, see Theo-
rem 3.3.2.

12
E X P E R I M E N TA L C O M PA R I S O N S F O R T H E
O R I E N TAT I O N P R O B L E M

A class, in Java, is where we teach objects how to behave.

— Richard E. Pattis

12.1 related work

We are not aware of performance comparisons of algorithms for the
densest subgraph problem and the orientation and pseudoarboricity
problems. However, extraction of densest subgraphs is a common
application. To this end, Tsourakakis et al. [Tso+13] implement Gold-
berg’s method and the greedy algorithm. Bălălău et al. [Băl+15] use
Charikar’s linear program and the greedy algorithm to find minimal
densest subgraphs with small overlap. They consider Goldberg’s
method unsuitable for their purposes due to poor performance; they
did not elaborate which flow algorithm this statement alludes to.
Valari et al. [VKP12] and Nasir et al. [Nas+17] propose streaming algo-
rithms for the top-k densest subgraph problem, which asks for the k
densest edge-disjoint subgraphs (see [GGT16; Don+18] for algorithms
and complexity in the overlapping case). Valari et al. implement Gold-
berg’s method, but do not state which flow algorithm is used in their
implementation.

12.2 selection of algorithms

We tested binary search methods with maximum flow algorithms,
which were implemented in Java and run with OpenJDK 11.0.3. We
implemented Dinitz’s (D) algorithm and variants of the push-relabel
algorithm. The relabel-to-front variant runs in O(|V|3) [Cor+01], the
highest-label variant (HL) runs in O(|V|2

√︁
|E|) time [CM88]. For

the highest label variant, we added the global relabeling and gap
heuristics [CG97]. The performance of the relabel-to-front variant is
significantly worse on all instances, we do not report its runtimes
for a more compact presentation. The interested reader is referred to
[Blu16].

We also extend the highest-label variant to an algorithm for para-
metric flow networks (that does not use a binary search) as described
by Gallo et al. (P-HL) [GGT89] (see Subsection 3.3.3). It has a run-
time of O(|V|2

√︁
|E|) if we restrict ourselves to integral parameter

guesses from the interval {0, . . . , |V| − 1} [GT94]. We did not imple-
ment the variant with link-cut trees, which would yield a runtime of

149

150 experimental comparisons for the orientation problem

O(|V||E| log(|V|2/|E|)), because this data structure is sometimes less
efficient in practice.1

The aforementioned algorithms are used to determine ⌈d∗⌉ with
Goldberg’s method (which also computes a subgraph of density
greater ⌈d∗⌉ − 1), its modification by Georgakopoulos and Politopou-
los, and the re-orientation algorithm. The latter performs exact com-
putation without approximation phases. The reason for this is that the
stopping criterion was not met for the parameter choices in the proof
of Theorem 6.0.1, and thus the approximation scheme outputs the
optimum solution. We give more details on the length of augmenting
paths in Section 12.5. The balanced binary search technique was also
not implemented.

The lower and upper search interval bounds were initialized with
the bounds from Section 8.4, also for LPs, but not bounds obtained
from a constant-factor approximation. The reason for this is twofold:
We could compute a (1 + ϵ)-approximation for an arbitrarily small
ϵ with a runtime bound that depends on ϵ. While the linear-time
2-approximation algorithm could serve as a gold standard here, it may
happen to compute a very good approximation and thus influence the
binary search unduly.

The tests were repeated with the preprocessing from Lemma 11.0.3
to reduce the input sizes, it uses the greedy algorithm in order to
obtain a lower bound on d∗. As noted in Section 7.1, the greedy
algorithm computes a 1/2-approximation to d∗ that is never greater
than the one obtained from the 2-approximation to its dual problem
that is also computed by the greedy algorithm. The latter was used
in [Blu16] for preprocessing. By using the former, we were able to
improve the already significant reduction by preprocessing consider-
ably on some instances. Again, preprocessing could be done using a
(1 + ϵ)-approximation, which we choose not to do. We note another
possible improvement that was not implemented: Every time a new
lower bound on d∗ is computed through an unsuccessful2 test, we can
again invoke preprocessing.

We also implemented a parameterized LP of Georgakopoulos and
Politopoulos [GP07] (not discussed in this thesis) for d∗ with a binary
search for integral test values.3 We implemented the orientation LP
(3.16)-(3.20), once with the (continuous) variable d to be minimized
and once with a binary search for integral test values that test the LP’s
feasibility for constant d. Recall that in the latter, the constraint matrix

1 An experimental study of link-cut trees in the Edmonds–Karp algorithm [EK72] is
available, here the runtime heavily depends on the chosen link-cut trees variant and
the class of input graphs [Wer06; TW07].

2 Note that in Kowalik’s approximation scheme, a test may be reported to be unsuc-
cesful although the test value is feasible. However, this only happens if the stopping
criterion terminates the flow algorithm early, otherwise the value is indeed a lower
bound.

3 This LP generalizes to vertex- and edge-weighted hypergraphs. Its constraint matrix
is totally unimodular.

12.3 lp solver and hardware configuration 151

is totally unimodular, which guarantees integral extreme points. The
LP solver might exploit this property further.

12.3 lp solver and hardware configuration

We use Gurobi 9.0 [Gur19], which is free for academic purposes, to
solve the LPs. We report results for the dual simplex method on
otherwise default settings. The dual simplex method is faster on
average and uses less memory than the primal simplex method.

The tests were run on a single core of an Intel i7-5820K CPU with
3.3 GHz and 64 GB DDR-4 RAM. Note that Gurobi has multithreading
capabilities, but we only allow it to use a single thread. The operat-
ing system is Debian 8.2.0 (64-bit). Note that for the largest graph,
Friendster, it was necessary to save memory by using the data type
byte (which uses eight bits) for arcs of capacity one and two.

12.4 input graphs

We use large simple graphs from the Stanford SNAP database [LK14]
as input graphs, namely the Amazon, DBLP4, YouTube, LiveJournal,
Orkut and Friendster networks with about 1 million to 1.8 billion edges.
The exact sizes are presented in Table 12.1 on the next page.

Even and Tarjan [ET75] propose a family of flow networks on which
Dinitz’s algorithm needs as much time as its asymptotic worst-case
runtime estimate. Since our flow networks do not belong to this family,
we propose a graph family where we expect the shortest augmenting
paths to become quite long because of a mixture of varying degrees,
high local densities, and a large diameter. For n ∈ N, we define
graph Gn as a union of the complete graphs K1, K2, . . . , Kn, where
every vertex of Ki is additionally connected to all vertices of Ki+1 for
i = 1, . . . , n − 1. Gn has n(n + 1)/2 vertices and (n3 − n)/2 edges
in total and an average density |E|/|V| = n − 1 ∈ Θ(

√︁
|V|). If

n ≥ 2, the vertices in Kn−1 have a degree of 3n− 4 in Gn, which is the
maximum degree ∆(Gn). By Lemma 3.2.3, we have d∗ ≤ 3n/2− 2, so
d∗ ∈ Θ(

√︁
|V|). We denote the smallest ϵ > 0 for which the stopping

criterion of the approximation scheme is met by ϵ̃. We expect that
ϵ̃(Gn)→ 0 as n→ ∞. We will not report runtimes for these graphs in
LP-based approaches, and also no runtimes after preprocessing.

4 The DBLP graph is a collaboration network of computer scientists: Two authors
are connected by an edge if they have at least one joint publication in the DBLP
database. We note that Goldberg’s method returns a subgraph with an average
density of approximately 56.57 for test value ⌈d∗⌉ − 1 = 56. It has 115 vertices
(authors). Unfortunately, we do not know how to resolve the vertex numbers to the
corresponding author names, which would have been quite interesting.

152 experimental comparisons for the orientation problem

Table 12.1: Characteristics of the input graphs. The maximum pathlength
encountered in the re-orientation algorithm with Dinitz’s algo-
rithm is denoted by k, ϵ̃ denotes the smallest ϵ for which the
approximation scheme would terminate early (rounded to two
decimal places). The runtime of the greedy algorithm is given in
seconds.

Graph Vertices Edges k ϵ̃ ⌈d∗⌉ G. Time

Amazon 334,863 925,872 21 0.96 5 0

DBLP 317,080 1,049,866 5 67.2 57 0

YouTube 1,134,890 2,987,624 24 0.89 46 1

LiveJ. 3,997,962 34,681,189 12 3.58 194 7

Orkut 3,072,441 117,185,083 34 0.60 228 21

Friendster 65,608,366 1,806,067,135 31 0.86 274 529

G100 5,050 499,950 11 1.58 134 0

G200 20,100 3,999,900 13 1.47 277 0

G400 80,200 31,999,800 18 1.03 567 0

G800 320,400 255,999,600 25 0.74 1,152 6

G1600 1,280,800 2,047,999,200 35 0.54 2,332 49

12.5 results

Table 12.2 on the facing page shows the effects and the runtime of
preprocessing. (This does not include the time to greedily compute
a 1/2-approximation, which is given in Table 12.1.) On the Friendster
instance, the preprocessing takes less than a minute. On all other in-
stances from the SNAP database, the runtimes is less than two seconds.
The reduction of the number of edges of the graphs is slightly less
than 38.2% for the Amazon instance and between 94.8% and 99.3%
for the other instances. Therefore, preprocessing is a very effective
tool in real-world instances whose degree distribution typically fol-
lows a power law [BA99]. However, graphs with different degree
distributions cannot be expected to be reduced as much.

The runtime results for the linear programs are presented in Ta-
ble 12.3 on the next page. For flow-based methods, this is done in
Table 12.4 on page 154.

The orientation LP (3.16)-(3.20) is solved considerably faster than
the Georgakopoulos–Politopoulos LP with a binary search. Using a
binary search for the orientation LP with integral test values d often
results in even better runtimes. The preprocessed Friendster instance
is an exception, we suspect this is an outlier.

12.5 results 153

Table 12.2: Sizes of the input graphs from the SNAP database after prepro-
cessing. The preprocessing time (excluding the time to compute
the 1/2-approximation) is given in seconds.

Graph Vertices Edges k ϵ̃ P. Time

Amazon 169,008 572,762 20 0.96 0

DBLP 280 13,609 4 15.74 0

YouTube 2,269 103,342 16 0.74 0

LiveJ. 2,539 466,625 8 2.70 0

Orkut 26,670 6,077,055 22 0.67 1

Friendster 49,370 13,503,583 11 2.33 47

G100 2,839 351,813 11 1.42 0

G200 10,509 2,666,751 14 1.17 0

G400 40,014 20,586,976 19 0.87 0

G800 154,800 160,614,000 26 0.65 1

G1600 601,605 1,256,057,830 35 0.50 11

Table 12.3: Runtimes (in seconds) for computing d∗ with linear programs
using Gurobi. The orientation LP coupled with a binary search
uses integral test values only, i.e., ⌈d∗⌉ is determined. If the
computation requires more than the available 64 GB of RAM, ‘out
of memory’ (OOM) is stated in the table.

Graph Orientation LP BS for d-orientation G.–P. LP

Amazon 152 12 136

DBLP 8 7 43

Youtube 452 57 309

LiveJ. 314 314 OOM

Orkut OOM OOM OOM

Friendster OOM OOM OOM

Amazon-P 82 7 67

DBLP-P 0 0 1

Youtube-P 3 3 7

LiveJ.-P 10 9 69

Orkut-P 2,168 1,747 6,529

Friendster-P 3,018 23,806 36,098

154 experimental comparisons for the orientation problem

Table 12.4: Time (in seconds) needed to compute ⌈d∗⌉ with several flow algo-
rithms. The suffix -P denotes instances reduced by preprocessing.
The flow algorithms were Dinitz’s algorithm (D), the highest-label
(HL) variants of the push-relabel algorithm, and the extension of
the latter to parametric flow problems (P-HL). If the time limit of
10 hours is exceeded, this is indicated by TLE.

Goldberg’s Geor.-Polit. Re-orientation

Graph D HL P-HL D HL D HL

Amazon 3 200 9,164 2 262 2 189

DBLP 2 11 8,417 0 7 1 6

Youtube 15 665 TLE 5 635 15 210

LiveJ. 113 14,047 TLE 34 2,165 77 1,264

Orkut 391 TLE TLE 119 18,252 352 TLE

Friendster 14,178 TLE TLE 6,066 TLE 14,209 TLE

Amazon-P 1 204 1,903 2 225 1 205

DBLP-P 0 0 0 0 0 0 0

Youtube-P 0 4 4 0 4 0 5

LiveJ.-P 0 27 22 0 26 0 27

Orkut-P 9 3,055 2,948 14 3,044 8 3,165

Friendster-P 17 13,680 14,304 31 13,488 17 15,152

G100 0 1 44 0 1 0 1

G200 7 22 1,306 2 29 6 11

G400 84 434 TLE 21 554 90 352

G800 995 4,870 TLE 228 4,773 118 5,619

G1600 10,572 TLE TLE 4,149 TLE 1,399 TLE

12.5 results 155

For flow-based methods, Dinitz’s algorithm significantly outper-
forms push-relabel algorithms, and also the LP-based approaches. The
highest-label variant with a binary search is often much faster than
its parametric extension. We note that the runtime of a test heavily
depends on the test value. For example, the number of relabelings in
the HL algorithm on the preprocessed Friendster instance is 71, 629 for
test value d = 274 = ⌈d∗⌉, but 2, 221, 784, 361 for d = 273. Shrinking
the search interval may thus not provide a significant benefit in prac-
tice because the values slightly below ⌈d∗⌉ appear to be the hardest to
test. This implies parallelizing the binary search cannot be expected
to yield a significant speedup.

The Georgakopoulos–Politopoulos technique, which removes ver-
tices after unsuccessful tests in Goldberg’s method, is considerably
faster than Goldberg’s on a few instances, but slightly slower on oth-
ers. A single unsuccessful test removes 0− 90% of the remaining
vertices. The effect seems to be roughly the same on the original and
preprocessed instances. However, as the lower bounds are typically
tighter on preprocessed instances, there are less unsuccessful tests.
Sometimes, all tests but one are successful. If the only unsuccessful
test is the last test, then there clearly is no improvement at all. There
is no known estimate of how many vertices can be expected to be
removed from an unsuccessful test [GP07].

We report our findings on the augmenting path lengths in the ex-
ecution of Kowalik’s scheme in Tables 12.1 and 12.2. The value k is
the maximum length of an augmenting path in Dinitz’s algorithm
encountered among all test values of the binary search. Perhaps non-
surprisingly, this maximum length is often (but not always) attained
at test value ⌈d∗⌉ − 1. We note that this value is empirical and may
depend on the implementation of Dinitz’s algorithm, as well as the
initial orientation5. The value ϵ̃ denotes the smallest ϵ for which the
stopping criterion is met for k.

Choosing ϵ ≥ 1 in the approximation scheme is not reasonable be-
cause the linear-time 2-approximation algorithm is preferable. There-
fore, assume that ϵ < 1. On some graphs, the stopping criterion is
not met for any ϵ < 1, i.e., the exact solution will be returned. On
all input graphs, the choices6 for ϵ in the proof of Theorem 6.0.1 are
smaller than the critical epsilon, i.e., the (first) approximation phase
computes the optimum solution. This is easily recognized and the
second phase need not be performed. It would be interesting to see a
family of graphs where the approximation phase does not compute
the optimum solution, but helps in accelerating the binary search as
in our theoretical result.

5 Different initial orientations were tried, but the effect is negligible.
6 Recall that ϵ can be set using any constant-factor approximation. We assume here

that ϵ is set with the exact value of d∗ and ln |V|, the latter stems from the Taylor
expansion (see Theorem 4.2.3).

13
P R O B L E M S I N V O LV I N G C O N N E C T E D S U B G R A P H S

That the (connected) densest subgraph problem is solvable in polyno-
mial time is a fortunate exception to the rule of thumb that subgraph
problems are NP-complete. A restriction on the number of vertices or
edges typically makes a problem NP-hard.

In the densest k-subgraph problem, we are interested in the densest
subgraph on k vertices. The decision variant asks whether a subgraph
on k vertices exists whose average density is at least d. This decision
problem is easily seen to be NP-complete by a reduction from the
clique problem (Definition 2.6.4).

Theorem 13.0.1. The densest k-subgraph problem is NP-complete.

Proof. A solution to the problem can be verified in polynomial time.
There is a k-clique in G if and only if the densest k-subgraphs of G
are complete. Hence, using the same k and setting d = k(k − 1)/2
constitutes a polynomial-time reduction.

The best known approximation algorithm is due to Bhaskara et al.

Theorem 13.0.2 ([Bha+10]). A |V|1/4+ϵ-approximation of the densest k-
subgraph problem can be determined in O(|V|1+ϵ) time for every ϵ > 0.

In seminal work, Khot ruled out a PTAS assuming a variant of the
exponential time hypothesis.

Theorem 13.0.3 ([Kho06]). There is no PTAS for the densest k-subgraph
problem unless SAT can be solved in expected time O(2nϵ

) for an arbitrarily
small constant ϵ > 0.

There are numerous other problems involving subgraphs, density
or weights, and connectivity. For example, determining whether an
induced subgraph with exactly k edges exists is NP-complete [Tri93;
AT94]. We note that if we require the induced subgraph to be con-
nected, the problem is also NP-complete by the same reduction from
vertex cover.

Definition 13.0.4 (Vertex Cover). Given a simple graph G = (V, E)
and k ∈N, is there a set S ⊆ V with |S| ≤ k such that for every edge
e ∈ E, at least one endpoint of e is in S?

NP-hardness of vertex cover can be proved by a reduction from the
clique problem (Definition 2.6.4).

Theorem 13.0.5 ([Tri93; AT94]). Given a simple graph G = (V, E) and
1 ≤ k ≤ |V|, it is NP-complete to decide whether an induced (or connected
induced) subgraph of G with exactly k edges exists.

157

158 problems involving connected subgraphs

Very general results of Yannakakis and Lewis will be given in the
following. A class of graphs is called a graph property if any two
isomorphic graphs either both are in the class or both are not. Put
differently, a graph property is preserved under isomorphisms and
does not depend on a representation such as a labeling or drawing of
the graph. A graph property Π is called hereditary if it holds for all
induced subgraphs of G if it holds for G itself.

Theorem 13.0.6 ([Yan78; Lew78]). Let Π be a hereditary graph property
that does not hold for all graphs, but there are arbitrarily large graphs for
which it does hold. Then the problem of deciding whether there is a set S ⊆ V
of at least k vertices such that the subgraph G[S] has property Π is NP-hard.
If Π can be decided in polynomial time, the problem is NP-complete.

The result holds analogously for induced connected graphs.

We now informally describe the three NP-complete problems that
we will deal with in the following chapters. They are all related to each
other, and they can be solved with a mixed integer linear program
(MILP) based on the maximum density. We will describe this MILP
only for the k-cardinality problem because it is strongest when the
number k of vertices in the subgraph is specified. The k-cardinality
tree problem is to find a subtree with k vertices of minimum total edge
weight. It will be dealt with in the next chapter.

The Steiner tree problem in graphs is to find a subtree of minimum
total edge weight that spans a set of given terminal vertices. ILP
approaches, as well as approximation algorithms based on them, will
be discussed in Chapters 16 to 18.

The maximum weight connected subgraph problem (MWCS) is to
find a connected subgraph of maximum total vertex weight. It will
be introduced in Chapter 19 and some preprocessing rules will be
developed.

14
T H E K - C A R D I N A L I T Y T R E E P R O B L E M

Given a weighted graph, the k-cardinality tree problem asks for a
subtree with k vertices that minimizes the sum of edge weights.

Definition 14.0.1 (k-Cardinality Tree Problem). Given a non-negatively
weighted simple graph G = (V, E, w) and integers k, l ∈ N, decide
whether a subtree of G of exactly k vertices1 exists with total weight
at most l.

It is also called the k-MST problem, because the special case k = |V|
is the minimum spanning tree problem (MST). A minimum spanning
tree can be computed in time O(|E|α(|E|, |V|)) [Cha00b], where α de-
notes a variant of the inverse Ackermann function (Section 2.3). Pettie
and Ramachandran describe a time-optimal algorithm to compute the
MST [PR02], although its runtime is currently unknown. An MST can
also be computed in O(|E|) expected time [KKT95].

For constant k, the k-cardinality tree problem can be solved in
polynomial time by brute force. For general k, it can be shown to be
NP-complete, which was proved independently by several authors
[LZ93; Fis+94; Rav+96].

Theorem 14.0.2 ([Rav+96]). The k-cardinality tree problem is NP-complete,
even for planar graphs and graphs with weights from the set {1, 2, 3}.

This can be proved by a reduction from the Steiner tree problem
in graphs (Definition 16.2.1), which is NP-complete for planar graphs
and unweighted graphs (see Section 16.3).

There is also a rooted variant of the problem, where a designated
root vertex r ∈ V must be selected. We will only consider the unrooted
problem, which can clearly be solved by |V| applications of an algo-
rithm for the rooted problem. Garg [Gar05] points out that the rooted
problem also reduces to the unrooted problem: By adding |V| vertices
to the root and adding edges (r, v) with zero weight for each of the
additional vertices, selection of the root is forced for k′ = k + |V|.

Several approximation algorithms have been developed for the k-
cardinality tree problem [Awe+95; RV95; Rav+96]. Blum et al. [BRV96;
BRV99] gave the first constant-factor approximation with a factor of
17 that uses the primal-dual method of Goemans and Williamson
[GW95] for the prize-collecting Steiner tree problem (Definition 19.1.1).
Garg [Gar96] extended their approach for a 3-approximation algo-
rithm and a simpler 5-approximation algorithm. He also shows the
integrality gap of the LP formulation he uses to be at least three.

1 Note that some authors require selection of k edges and thus of k + 1 vertices.

159

160 the k-cardinality tree problem

The latter algorithm was recast by Chudak et al. [CRW04] using the
prize-collecting Steiner tree problem, which is a Lagrangean relaxation
of the k-cardinality tree problem. Arya and Ramesh [AR98] give a
2.5-approximation algorithm by applying a pruning procedure before
Garg’s 3-approximation algorithm. Arora and Karakostas [AK06] give
a (2 + ϵ)-approximation algorithm for every ϵ > 0, which is also
a modification of Garg’s 3-approximation algorithm. Finally, Garg
[Gar05] gives a 2-approximation algorithm, which is the best known
to date. In the following section, we will investigate integer linear
programs for solving the problem exactly.

There are also metaheuristic approaches to the problem, see [BS04]
and the literature cited therein. We close our review by noting that
an exact algorithm based on tree decompositions exists [CMZ12] (see
also [Alt+14]).

14.1 integer linear programs

Although the connected components of a graph can be determined eas-
ily in time O(|V|+ |E|) with DFS or BFS, it is surprisingly difficult to
model connectivity in an integer linear program. Several approaches
use an exponential number of constraints. There are so-called compact
formulations that use only a polynomial number of constraints. For
example, Wong [Won84] gives a multi-commodity flow formulation
for the Steiner tree problem with Θ(|V||E|) variables. This is a theoret-
ically important result because solving the LP relaxation is possible in
polynomial time. Building upon an idea of Cohen [Coh10], Althaus et
al. [Alt+14] propose a mixed integer linear program (MILP) based on
the maximum density to model connectivity with only O(|V|+ |E|)
constraints.

We compare this MILP to a well-known existing integer linear
program, the subtour elimination constraints. Chimani et al. [Chi+10]
perform similar comparisons specifically for the k-cardinality tree
problem, and we loosely follow their notation. Notable comparisons
of several linear programming relaxations for Steiner tree problems
were done by Goemans and Myung [GM93] and Polzin and Vahdati
Daneshmand [PD01].

14.1.1 Subtour Elimination Constraints

Before we consider subgraphs, let us first model a spanning tree of a
graph in an ILP. Recall Lemma 2.2.2: A graph of |V| vertices is a tree if
and only if it has exactly |V| − 1 edges and is acyclic. By introducing
binary variables xe for every edge e ∈ E, we can easily model the
number of edges:

∑
e∈E

xe = |V| − 1. (14.1)

14.1 integer linear programs 161

To enforce acyclicity, we forbid subtours: For a set S ⊆ V, we require
that at most |S| − 1 edges are selected, i.e., there is no cycle going
through all vertices in S:

∑
e∈E[S]

xe ≤ |S| − 1, S ⊆ V : |S| ≥ 2. (14.2)

Constraints (14.2) are called subtour elimination constraints (the con-
straint for S = V is redundant by (14.1)). They were introduced by
Dantzig et al. [DFJ54] for the NP-hard travelling salesman problem
(TSP), which asks for a simple cycle through all vertices of the graph
of minimum cost. (The constraint for set S = V is hence excluded for
TSP.)

Now consider the subgraph case. For every vertex v ∈ V, define a
binary variable yv that determines whether v is selected or not. If we
are looking for a subtree of unknown size, we can replace (14.1) by

∑
v∈V

yv = ∑
e∈E

xe + 1, (14.3)

If we are looking for a fixed size k, as in the k-cardinality tree problem,
we can use ∑v∈V yv = k and ∑e∈E xe = k− 1 instead. Constraints (14.2)
are replaced by

∑
e∈E[S]

xe ≤ ∑
v∈S

yv − yt, t ∈ S, S ⊆ V : |S| ≥ 2, (14.4)

the generalized subtour elimination constraints (GSEC) [Fis+94]. The
GSEC subtree polyhedron is defined as

PGSEC := {(x, y) ∈ [0, 1]|E|+|V| | (x, y) satisfies (14.3) and (14.4)}.

As writing down the ILP takes exponential time, one can use the
cutting-plane method (Subsection 2.11.7): Start with a subset of the
constraints, for example the constraints for sets S with |S| = 2. After
solving, find violated inequalities and add at least one of them. One
continues solving in this way until no violated inequalities can be
found. Fischetti et al. [Fis+94] show that a violated GSEC inequality
can be found with 2|V| − 2 maximum flow computations, if one
exists. The flow network has to be updated with every separation
call. Chimani et al. [Chi+10] use a directed equivalent of the GSEC
constraints that requires at most |V| flow computations on a flow
network that has to be built only once, only its capacities are updated
according to the LP solution.

Another equivalent formulation with O(|V||E|) constraints, based
on multi-commodity flows, can be obtained analogously to the ap-
proach of [Lju04] (see [Chi+10]). While it can be solved in polynomial
time and is thus theoretically pleasing, |V||E| can be prohibitively
large in practice, and it is known from related problems that solving
this LP is inferior to using the cutting-plane method [Lju+06; CKM07].

162 the k-cardinality tree problem

1
2

1
2 11

4
3
4

Figure 14.1: A fractional feasible of PMD for k = 2 on a graph with three
vertices that violates a GSEC constraint for S = {C, R}, the blue
vertices in the center and to the right: xCR = 3

4 > 1
2 = yC. The

corresponding Constraint (14.5) is xCR = 3
4 ≤ (1− 1

2)(1 +
1
2).

14.1.2 A Formulation Based on the Maximum Density

To enforce acyclicity, one can alternatively employ Lemma 3.1.5: A
graph is acyclic if and only if its maximum density is smaller than one,
or more precisely, at most 1− 1/|V|. Thus, we can use the constraints

∑
e∈E[S]

xe ≤
(︃

1− 1
|S|

)︃
∑
v∈S

yv S ⊆ V : 2 ≤ |S| < |V|. (14.5)

in addition to the cardinality constraint (14.3). Note that the con-
straints imply that the endpoints of a selected edge must be selected
as well in a feasible integral solution. We denote the polyhedron by

PMD := {(x, y) ∈ [0, 1]|E|+|V| | (x, y) satisfies (14.3) and (14.5)}.

One can think of the constraints based on the maximum density as
averages of GSEC constraints for a set S. It is not surprising that they
are weaker.

Proposition 14.1.1. Constraints (14.5) are implied by the GSEC constraints
(14.4), i.e.,

PGSEC ⊆ PMD.

Furthermore, there are instances where the containment is proper.

Proof. Let G = (V, E) be a simple graph, (x, y) ∈ PGSEC(G), and let
S ⊆ V with |S| ≥ 2. We consider the strongest constraint for this set:
Let t∗ ∈ S with t∗ = arg maxt∈S yt. We have

∑
uv∈E[S]

xuv
(14.4)
≤ ∑

v∈S
yv − yt∗ = ∑

v∈S
yv −

1
|S| ∑

v∈S
yt∗

≤ ∑
v∈S

yv −
1
|S| ∑

v∈S
yv

=

(︃
1− 1
|S|

)︃
∑
v∈S

yv.

The GSEC constraints are indeed strictly stronger, even on a graph
with three vertices and two edges, as the example in Figure 14.1
shows.

14.1 integer linear programs 163

1 1 1
4

1
4

1
4

1
41 1

4
1
4

1
4

1
4

Figure 14.2: A fractional assignment of (x, y) for k = 3 on a path of six ver-
tices. Let A, B, C, D, E, F denote the vertices from left to right.
The constraints for the set {C, D, E, F} (shaded blue) are re-
spected in the GSEC formulation (and, by Proposition 14.1.1,
also in (14.5)), but not by Constraints (14.5>k). All other sets
have feasible constraints in all three formulations.

If an upper bound k is imposed on the number of vertices to select,
it suffices to consider sets S with |S| ≤ k. In this bounded case, the
maximum density of any feasible integral solution is at most 1− 1/k.

However, fractional solutions of the LP could have more than k
vertices with positive values yv. Adding the constraints for |S| > k
cuts off some of these fractional solutions, as we shall see shortly. For
these constraints, we can use the constant k, which yields a tighter
bound than |S|:

∑
uv∈E[S]

xuv ≤
(︃

1− 1
|S|

)︃
∑
v∈S

yv, S ⊆ V : 2 ≤ |S| ≤ k, (14.5≤k)

∑
uv∈E[S]

xuv ≤
(︃

1− 1
k

)︃
∑
v∈S

yv, S ⊆ V : k < |S| ≤ |V|. (14.5>k)

We denote the corresponding polyhedron by

Pk
MD := {(x, y) ∈ [0, 1]|E|+|V| | (x, y) satisfies (14.3), (14.5≤k),

and (14.5>k)}.

Constraints (14.5>k) are strictly stronger than the corresponding Con-
straints (14.5). An example of this can be seen in Figure 14.2 and
Table 14.1 on the next page. Moreover, (14.5>k) and (14.5≤k) define a
polyhedron incomparable to the GSEC polyhedron, i.e., neither is a
subset of the other. This can be shown with an example of Althaus et
al. [Alt+14, Figure 2] for a related formulation that will be introduced
in the next subsection. However, the solution in it does not satisfy
an additional cut that will be introduced in Subsection 14.1.4. The
example in Figure 14.2, however, shows incomparability (for k ≥ 3)
even with the additional cut.

14.1.3 An MILP Based on Orientations

Recall the fractional orientation problem, which is dual to the densest
subgraph problem: The maximum density of a graph equals the small-
est maximum fractional indegree (see Section 3.5). Cohen [Coh10]
uses this to obtain an MILP for a spanning tree problem. A tree has a
maximum density of exactly 1− 1/|V|, and thus there is an orientation

164 the k-cardinality tree problem

Table 14.1: Several constraints for set S = {C, D, E, F} in the example of
Figure 14.2 on the previous page.

Constraints S = {C, D, E, F}

(14.4) 3
4 ≤ 4 · 1

4 − 1
4

(14.5) 3
4 ≤

(︁
1− 1

4

)︁ (︁
4 · 1

4

)︁
(14.5>k) 3

4 ≰ 2
3 =

(︁
1− 1

3

)︁ (︁
4 · 1

4

)︁

of maximum fractional indegree 1− 1/|V|. Moreover, since |V| − 1
edges are to be oriented among |V| vertices, every vertex receives
exactly 1− 1/|V| in such a fractional orientation.

Althaus et al. [Alt+14] generalize Cohen’s idea to subgraphs. The
smallest maximum fractional indegree of a tree that has k vertices
can be (1− 1/k) at most. It must be (1− 1/k) at least when a lower
bound k on the number of vertices is given. The MILP is

fuv,u + fuv,v = xuv, uv ∈ E, (14.6)

∑
uv∈E

fuv,v ≤
(︃

1− 1
k

)︃
yv, v ∈ V, (14.7)

∑
uv∈E

fuv,v ≥
(︃

1− 1
k

)︃
yv, v ∈ V, (14.8)

yv ∈ {0, 1}, v ∈ V,

xuv ∈ {0, 1}, uv ∈ E,

fuv,u, fuv,v ∈ [0, 1], uv ∈ E.

Note that Constraint (14.8) is not necessary to enforce acyclicity. Con-
straints (14.7) and (14.8) form an equation if k = k = k:

∑
uv∈E

fuv,v =

(︃
1− 1

k

)︃
yv, v ∈ V. (14.9)

Proposition 14.1.2 ([Alt+14]). For k = k, (14.3) is implied by (14.9) and
one of the following:

∑
u∈V

yv = k, (14.10)

∑
uv∈E

xuv = k− 1. (14.11)

Proof. If (14.9) and (14.10) hold, we obtain

∑
uv∈E

xuv = ∑
v∈V

∑
uv∈E

fuv,v
(14.9)
= ∑

v∈V

(︃
1− 1

k

)︃
yv

(14.10)
= k− 1.

14.1 integer linear programs 165

Likewise, if (14.9) and (14.11) hold, we have

k− 1
(14.11)
= ∑

uv∈E
xuv = ∑

v∈V
∑

uv∈E
fuv,v

(14.9)
=

(︃
1− 1

k

)︃
∑

v∈V
yv.

Division by (1− 1/k) (for k ̸= 1) yields Constraint (14.10).

In the paper by Althaus et al. [Alt+14], ‘spanning edge’ constraints
xuv ≤ yu, yv for uv ∈ E were part of the formulation. These are
exactly the GSEC constraints for S = {u, v}. They are not necessary
for the formulation because Constraints (14.6) and (14.7) guarantee
that the endpoints of a selected edge must be selected in every integral
solution. Adding them cuts off fractional solutions, however (such as
the solutions in Figure 14.1 on page 162 and Figure 14.3 on the next
page), and the number of these constraints is only linear. We can now
define the polyhedron based on orientations:

Pk,k
O := {(x, fu, fv, y) ∈ [0, 1]3|E|+|V| | (x, fu, fv, y) satisfies (14.3)

and (14.6)-(14.8)}.

If k = k or only one bound on the number of vertices is required, we
alter the superscript accordingly. In order to compare this polyhedron
to polyhedra with different variables, we will use the projection projx,y
onto the variable space (x, y) via xuv = fuv,u + fuv,v.

Proposition 14.1.3. Constraints (14.5≤k) for |S| = k and Constraints
(14.5>k) are implied by Constraints (14.6) and (14.7).

Proof. For any S ⊆ V with |S| ≥ k, we have

∑
uv∈E[S]

xuv
(14.6)
= ∑

v∈S
∑

uv∈E
u∈S

fuv,v
(14.7)
≤
(︃

1− 1
k

)︃
∑
v∈S

yv.

Corollary 14.1.4 ([Alt+14]). PGSEC and projx,y

(︂
Pk

O

)︂
are not comparable

in general.

Theorem 14.1.5. We have

PGSEC ∩ projx,y

(︂
Pk

O

)︂
⊆ Pk

MD.

Furthermore, there are instances where the containment is proper.

Proof. This follows from Proposition 14.1.1 and Proposition 14.1.3.

Constraints (14.7) for |S| < k are strictly weaker than (14.5≤k), an
example can be seen in Figure 14.3 on the following page.

166 the k-cardinality tree problem

1
2

1
2

1
2

1
2

1
18

0 1
9

1
3

1
18

1
9 0

1
3

(a)

1
2

1
2

1
2

1
2

1
9

1
9

1
9

2
3

1
18

1
3

(b)

Figure 14.3: An example graph that shows Constraints (14.5≤k) are strictly
stronger than (14.7) for k = 1, k = 3. (a) A feasible PO-solution is
shown. It does not respect (14.12). (b) The projection onto (x, y)
respects (14.7). The set of two vertices on the bottom (shaded
blue) does not respect (14.5≤k), however.

14.1.4 Additional Cuts

Another constraint, described by Althaus et al. [Alt+14], can be added
to the orientation MILP:

fuv,v ≥
1
k

xuv, uv ∈ E. (14.12)

The constraint is obviously valid for xuv = 0. For xuv = 1, we have
yu = 1 = yv as remarked earlier, and see from Constraint (14.7)
that fuv,u ≤ 1 − 1

k
, which by (14.6) implies that Constraint (14.12)

is respected by every feasible integral solution. Althaus et al. did
not provide an example to substantiate their claim that this cuts
off fractional solutions. One such example is given in Figure 14.3a.
However, the solution in the example, projected onto (x, y), would
also be cut off by the GSEC constraints for |S| = 2.

Lucena and Resende [LR01] describe the following cut: If at least
two vertices are to be selected, i.e., k ≥ 2, every selected vertex must
have at least one incident edge:

∑
uv∈E

xuv ≥ yv, v ∈ V. (14.13)

As remarked earlier, the example of a fractional GSEC solution used
by Althaus et al. [Alt+14] to show Corollary 14.1.4 does not respect
(14.13). The question whether Pk

O is contained in PGSEC with (14.13)
added can be answered in the negative, however: Figure 14.2 on
page 163 shows a fractional GSEC solution that respects (14.13), but is
not in Pk

O. Could it be the case that Constraints (14.13) are implied?

Proposition 14.1.6. For k = k, Constraints (14.8) and (14.12) imply Con-
straints (14.13).

14.1 integer linear programs 167

A B C D E

F

G

(a)

1
2

1
2

1
2

1
3

1
6

1
2

1
2

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
9

1
3

1
6

1
180

0

(b)

1
2

1
2

1
2

1
3

1
6

1
2

1
2

1
3

1
3

1
6

1
6

1
2

1
6

1
3

(c)

Figure 14.4: (a) A graph of a k-cardinality tree instance for k = 3. (b) A
feasible solution to Pk

O. It does not respect Constraint (14.12)
in the blue edges. (c) The projected solution is feasible for the
GSEC constraints. It also respects Constraint (14.13).

Proof. If k = 1, there is nothing to show. For every v ∈ V, we have(︃
1− 1

k

)︃
yv

(14.8)
≤ ∑

uv∈E
fuv,v

(14.6)
= ∑

uv∈E
1− fuv,u

(14.12)
≤

(︃
1− 1

k

)︃
∑

uv∈E
xuv.

For the case 2 ≤ k = k, we can divide by
(︂

1− 1
k

)︂
and obtain exactly

(14.13).

Could it be the case that Constraints (14.12) are implied by the
intersection of Pk

O, PGSEC and Constraints (14.13)? We answer this in
the negative.

Proposition 14.1.7. By adding Constraints (14.12), we obtain a strictly
stronger formulation than PGSEC ∩ projx,y

(︁
Pk

O
)︁

with Constraint (14.13).

Proof. Consider the example graph in Figure 14.4a for k = 3. The
feasible PO-solution in Figure 14.4b projects onto (x, y) in Figure 14.4c.

168 the k-cardinality tree problem

We show that there is no feasible PO-solution that projects onto this
(x, y) while respecting (14.12). If Constraint (14.12) were required to
hold, we would have fFB,B, fGB,B ≥ 1/18. Therefore, B may receive
at most 2/9 from C by (14.7), i.e., fBC,B ≤ 4/18. Thus fBC,C ≥ 5/18
by (14.6). Since C may receive at most 1/3, fCD,C ≤ 1/18. But (14.12)
dictates that fCD,C ≥ 1/9 = 2/18. Hence, there can be no feasible
solution for this choice of (x, y) that respects all constraints.

Our new results show that (M)ILP formulations for the k-cardinality
tree problem are far from understood completely. We wonder whether
they can be used to design new approximation algorithms for the
problem.

15
E X P E R I M E N TA L C O M PA R I S O N F O R
K - C A R D I N A L I T Y T R E E S

As we saw in the previous chapter, there is an MILP for connectivity
(of subgraphs) with only a linear number of constraints. If the number
of vertices to be selected is bounded from above by k, as is the case
in the k-cardinality tree problem, this formulation is tightened and
becomes incomparable to GSEC. Furthermore, we saw two additional
cuts that can be used to cut off feasible fractional solutions. In this
chapter, we will only report results for a fixed number of vertices k
where the MILP is tightest.

15.1 formulations selected for comparison

We implemented a directed variant of the GSEC ILP as described by
Chimani et al. (see Subsection 14.1.1). The separation is performed
with the Edmonds–Karp algorithm [EK72] in an implementation by
Sedgewick and Wayne [SW11]. Following [Lju04; Chi+10], we ini-
tially added constraints whose projections are the ‘spanning edge’
constraints

xuv ≤ yu, yv, uv ∈ E, (15.1)

of GSEC for |S| = 2. Using them initially considerably speeds up the
computation. We search for violated inequalities for every feasible
integral solution that is found in the solving process. This is not
necessary1, but allows us to report the gap for the whole ILP when
we terminate early, not just the gap for the current set of constraints.
Additionally, we search for violated inequalities when solving the
relaxation of a node has yielded a feasible fractional solution.

We do not try extracting multiple cuts from a single maximum flow,
which was used in [KM98; Lju+06], but only one. Still, we typically
find a few dozen to a few hundred2 cuts in the flow computations of
each separation step.

We implemented the orientation MILP (14.6), (14.9), (14.10), and
(14.12). Recall that Constraints (14.13) are implied by Proposition 14.1.6
for a fixed number of vertices k. We also added Constraints (15.1).

1 Assuming that we search for violated inequalities when the solver returns an optimum
integral feasible solution, and continuing the solving process after adding such an
inequality.

2 This way, one can only find as many violated cuts as vertices with yv > 0 exist in the
solution, i.e., at most k in integer solutions. Feasible fractional solutions can involve
more than k such vertices, however.

169

170 experimental comparison for k-cardinality trees

This formulation of size O(|V|+ |E|) is referred to as ‘O-MILP’ in the
following.

We also combined the two approaches: The O-MILP constraints
(with the directed equivalent of (15.1)) are used as a basis that guaran-
tees connectivity for integral feasible solutions, and the GSEC equiva-
lent is used to tighten the LP relaxation further on fractional feasible
solutions. We note that the directed GSEC equivalent has an additional
artificial root vertex r /∈ V that does not have a corresponding variable
yr, but arc variables x(r,v) to every v ∈ V. These latter variables do not
appear in the O-MILP constraints.

15.2 input data , machine configuration, and solver set-
tings

There is a library of instances for the k-cardinality tree problem,
KCTLIB3 [BB05]. It includes 35 instances generated by Blesa and
Xhafa [BX00] with a tool by Jörnsten and Løkketangen [JA97]. With
current hardware and advanced ILP solvers, solving these latter in-
stances exactly with up to 1, 000 vertices and 2, 000 edges is not a
challenge for k = 21.4 All instances but one could be solved to opti-
mality within 20 seconds using the GSEC equivalent. The remaining
instance took 146 seconds to solve. We thus exclude the instances
from our experiments.

The library also includes ten instances based on grid graphs gener-
ated in [BB05], and one Leighton graph [Bea90]. The dimensions of
the grids are specified in the instance name. The Leighton graph has
450 vertices and 8,168 edges. There are also five instances based on the
Steiner tree problem [Bea90], but these are also solved in a matter of
seconds and hence excluded. We report results for the eleven relevant
instances with a time limit of one hour.

We also use the ACTMOD dataset of the 11th DIMACS Implementa-
tion Challenge5 for the MWCS problem (see Table 19.1 in Chapter 19),
which has vertex weights. Because MWCS is a maximization problem,
we multiplied the weights with −1 for our minimization problem.
Some instances have several connected components. All components
except the largest have less than 30 vertices, they are all discarded.

We use the same machine configuration as in Section 12.3 and utilize
only one processor core and one Gurobi thread. We ran the tests once
with Gurobi on default settings, and once with modified settings for a
fair comparison:

3 As of January 2020, available at http://www.iiia.csic.es/~christian.blum/

downloads/KCT_benchmark.tgz.
4 Note that the k = 20 used in [BB05] is the number of edges. We continue to denote

the number of vertices by k.
5 http://dimacs11.zib.de

http://www.iiia.csic.es/~christian.blum/downloads/KCT_benchmark.tgz
http://www.iiia.csic.es/~christian.blum/downloads/KCT_benchmark.tgz
http://dimacs11.zib.de

15.3 results 171

1. Gurobi tries to reduce and tighten the LP model before the
solving process, which is called presolve (see [Ach+16]). This
capability was deactivated.

2. Gurobi tries to find cutting planes of its own that are not problem-
specific. This was also deactivated.

3. Gurobi uses heuristics in order to find feasible solutions. The
time to be spent on heuristics was set to zero percent.

On default settings, Gurobi aims to spend about 5% of the available
time on heuristics. We note that in approaches that add cutting planes
via ‘callbacks’, some presolve capabilities must be shut off with the
PreCrush parameter.

For all approaches, we provide the solver with a tree of k vertices as
a feasible start solution. We choose the tree returned by a lexicographic
BFS started in vertex 1. No reductions are performed on the graphs.
Note that all graphs are (after removing small components described
above) connected, so connected components are not treated separately.

15.3 results

We list gaps and runtimes after one hour for the two approaches and
their combination for k = 20 in Table 15.1 and for k = 40 in Table
15.2 with modified settings for Gurobi, and for default settings in
Tables 15.3 and 15.4, respectively.

With modified settings, the orientation MILP is solved to optimality
on only one instance within an hour for k = 20, and not a single one
for k = 40. Several instances are solved to optimality with the GSEC
equivalent, but its gap is not always better. More instances are solved
to optimality with the combination of the two; the gap is often, but
not always better. Overall, the results suggest that the combination
provides an advantage, the effect is slightly more prononced for k = 20.
This aligns with theoretical considerations, as the O-MILP becomes
less tight with growing k.

With default settings, the results are different: Most instances are
solved to optimality with the O-MILP, and it can be regarded as
the clear winner. The combination comes close for k = 20, but is
significantly outperformed for k = 40. The GSEC ILP clearly exhibits
the worst performance for both cardinalities.

The reason that the O-MILP exhibits this excellent performance with
default settings may be that the fewer constraints there are, the more
time Gurobi can expend on its built-in solving procedures. Thus, a
sparse model may be better than a tighter model, even if separation is
used. While more experiments should be undertaken, we think that
the O-MILP is a good alternative to GSEC, at least for moderate values
of k. We note that in order to be competitive with state-of-the-art
approaches, one should use problem-specific heuristics and parameter

172 experimental comparison for k-cardinality trees

tuning. For certain graph families, one might fare better with settings
tailored to them.

Table 15.1: Time in seconds (rounded) to solve the k-cardinality tree problem
for k = 20 with (M)ILP approaches. The gap after one hour of
solving is reported for modified settings of Gurobi.

O-MILP GSEC Both

Instance Gap Time Gap Time Gap Time

bb15x15_1 39.58% 3600 0.00% 95 0.00% 2

bb15x15_2 33.47% 3600 0.00% 521 0.00% 72

bb33x33_1 85.59% 3600 83.92% 3600 82.02% 3600

bb33x33_2 77.51% 3600 86.07% 3600 83.24% 3600

bb45x5_1 25.42% 3600 0.00% 3169 0.00% 1727

bb45x5_2 32.00% 3600 0.00% 522 0.00% 24

bb50x50_1 88.40% 3600 84.83% 3600 82.85% 3600

bb50x50_2 90.72% 3600 87.10% 3600 85.63% 3600

bb100x10_1 58.72% 3600 76.57% 3600 17.28% 3600

bb100x10_2 75.58% 3600 84.65% 3600 0.00% 19

le450_15a 0.00% 3072 0.00% 435 0.00% 331

drosophila001 291.42% 3600 247.10% 3600 247.10% 3600

drosophila005 470.96% 3600 225.47% 3600 680.32% 3600

drosophila0075 2470.30% 3600 964.67% 3600 964.67% 3600

HCMV 254.83% 3600 26.35% 3600 0.00% 579

lymphoma 54.07% 3600 0.00% 167 0.00% 27

metabol. . . 1 81.58% 3600 16.52% 3600 0.01% 83

metabol. . . 2 123.42% 3600 8.43% 3600 0.00% 235

metabol. . . 3 10.53% 3600 432.61% 3600 0.00% 50

15.3 results 173

Table 15.2: Time in seconds (rounded) to solve the k-cardinality tree problem
for k = 40 with (M)ILP approaches. The gap after one hour of
solving is reported for modified settings of Gurobi.

O-MILP GSEC Both

Instance Gap Time Gap Time Gap Time

bb15x15_1 65.30% 3600 42.52% 3600 72.26% 3600

bb15x15_2 82.07% 3600 71.38% 3600 32.01% 3600

bb33x33_1 87.09% 3600 81.50% 3600 80.85% 3600

bb33x33_2 93.12% 3600 81.83% 3600 80.25% 3600

bb45x5_1 60.41% 3600 73.02% 3600 49.99% 3600

bb45x5_2 58.04% 3600 0.00% 860 0.00% 80

bb50x50_1 93.47% 3600 81.87% 3600 80.82% 3600

bb50x50_2 89.20% 3600 85.30% 3600 84.80% 3600

bb100x10_1 89.61% 3600 73.97% 3600 0.00% 716

bb100x10_2 87.89% 3600 82.89% 3600 81.62% 3600

le450_15a 68.03% 3600 0.00% 3418 0.00% 3060

drosophila001 205.13% 3600 173.44% 3600 123.76% 3600

drosophila005 408.64% 3600 197.60% 3600 389.50% 3600

drosophila0075 403.88% 3600 531.19% 3600 531.19% 3600

HCMV 161.00% 3600 104.43% 3600 103.29% 3600

lymphoma 110.74% 3600 0.00% 71 0.00% 27

metabol. . . 1 315.65% 3600 303.45% 3600 70.40% 3600

metabol. . . 2 794.96% 3600 162.54% 3600 159.62% 3600

metabol. . . 3 90.89% 3600 251.84% 3600 248.04% 3600

174 experimental comparison for k-cardinality trees

Table 15.3: Time in seconds (rounded) to solve the k-cardinality tree problem
for k = 20 with (M)ILP approaches. The gap after one hour of
solving is reported for Gurobi’s default settings.

O-MILP GSEC Both

Instance Gap Time Gap Time Gap Time

bb15x15_1 0.00% 2 0.00% 422 0.00% 1

bb15x15_2 0.00% 5 0.00% 237 0.00% 18

bb33x33_1 0.00% 30 84.10% 3600 0.00% 46

bb33x33_2 0.00% 23 86.07% 3600 0.00% 69

bb45x5_1 0.00% 5 39.69% 3600 0.00% 293

bb45x5_2 0.00% 7 0.00% 327 0.00% 31

bb50x50_1 0.00% 312 85.21% 3600 7.90% 3600

bb50x50_2 0.00% 47 87.02% 3600 0.01% 941

bb100x10_1 0.00% 17 75.99% 3600 0.00% 9

bb100x10_2 0.00% 11 30.01% 3600 0.00% 13

le450_15a 0.00% 4 0.00% 823 0.00% 277

drosophila001 66.01% 3600 247.10% 3600 252.39% 3600

drosophila005 27.29% 3600 680.32% 3600 694.43% 3600

drosophila0075 27.73% 3600 964.67% 3600 984.61% 3600

HCMV 0.01% 205 110.29% 3600 0.00% 71

lymphoma 0.00% 51 0.00% 133 0.00% 36

metabol. . . 1 0.00% 21 320.99% 3600 0.00% 47

metabol. . . 2 0.00% 19 0.00% 2485 0.00% 48

metabol. . . 3 0.00% 4 426.17% 3600 0.00% 5

15.3 results 175

Table 15.4: Time in seconds (rounded) to solve the k-cardinality tree problem
for k = 40 with (M)ILP approaches. The gap after one hour of
solving is reported for Gurobi’s default settings.

O-MILP GSEC Both

Instance Gap Time Gap Time Gap Time

bb15x15_1 0.00% 93 48.46% 3600 0.00% 1167

bb15x15_2 0.00% 13 58.93% 3600 0.00% 2001

bb33x33_1 0.00% 1209 81.29% 3600 80.86% 3600

bb33x33_2 0.00% 369 81.83% 3600 5.58% 3600

bb45x5_1 0.00% 56 72.83% 3600 0.00% 2258

bb45x5_2 0.00% 9 0.00% 1514 0.00% 32

bb50x50_1 0.00% 1578 81.72% 3600 6.78% 3600

bb50x50_2 0.00% 925 85.35% 3600 100.00% 3600

bb100x10_1 0.00% 18 73.61% 3600 0.00% 1740

bb100x10_2 0.00% 191 82.43% 3600 8.58% 3600

le450_15a 0.00% 28 0.00% 1887 0.00% 1581

drosophila001 64.66% 3600 173.44% 3600 68.19% 3600

drosophila005 17.72% 3600 389.50% 3600 396.54% 3600

drosophila0075 15.65% 3600 531.19% 3600 2.74% 3600

HCMV 0.00% 581 0.00% 401 0.00% 267

lymphoma 0.00% 21 0.00% 710 0.00% 30

metabol. . . 1 0.01% 589 299.19% 3600 621.15% 3600

metabol. . . 2 0.01% 443 161.41% 3600 1.91% 3600

metabol. . . 3 0.01% 78 249.15% 3600 4.82% 3600

16
T H E S T E I N E R T R E E P R O B L E M

16.1 geometric steiner tree problems

The Euclidean Steiner tree problem is often attributed to the epony-
mous Jakob Steiner, but was considered earlier by Joseph Diez Ger-
gonne and Heinrich Christian Schumacher. For a full historical
overview, see Brazil et al. [Bra+14]. In the geometric variants of
the problem, some terminal points are given that have to be connected
by straight lines. In addition, points in the plane can be selected at
will to serve as ‘hubs’ between the terminals. These optional points
are called Steiner points. The solution must be a tree because distances
(metrics) are non-negative, it is called a Steiner tree.

Definition 16.1.1 (Euclidean Steiner Tree Problem). Given a set of n
points in the plane, is there a Steiner tree connecting these points that
has total Euclidean length at most k?

This contrasts the Euclidean spanning tree problem, where only the
given points are to be used. NP-hardness of the Euclidean Steiner tree
problem was established by Garey et al.

Theorem 16.1.2 ([GGJ77]). The Euclidean Steiner Tree Problem is NP-
hard.

It is unknown if the problem is in NP. The reason is that the dis-
tances can be irrational numbers, even when the point coordinates
are restricted to be integers. However, by rounding up distances, one
obtains a modified distance function for which the problem is in NP.
This problem can then be used to approximate the original problem
arbitrarily close by scaling [GGJ77].

A rectilinear Steiner tree is a tree whose line segments are all either
horizontal or vertical. In other words, the L1 metric is to be mini-
mized. No irrational numbers can arise when the points have integer
coordinates, in this case, the problem is in NP.

Definition 16.1.3 (Rectilinear Steiner Tree Problem). Given a set of n
points in the plane with integer coordinates, is there a Steiner tree
connecting these points that has total L1-length at most k?

Theorem 16.1.4 ([GJ77]). The Rectilinear Steiner tree problem is NP-
complete.

The proof uses a chain of reductions from the vertex cover problem
(see Definition 13.0.4) in planar graphs, which Garey et al. show to be
NP-complete [GJS76].

177

178 the steiner tree problem

16.2 the steiner tree problem in graphs

Let us now turn to the Steiner tree problem in the graph setting.

Definition 16.2.1 (Steiner Tree Problem in Graphs). Given a weighted
graph G = (V, E, w) with w : E → R+

0 , a set R ⊆ V of terminals,
and k ∈ N, is there a subtree of G spanning R (a Steiner tree) with
minimum total edge weight at most k?

The vertices V \ R are the Steiner vertices. We will call the objective
value of a Steiner tree its cost. If all weights are positive, one can
equivalently ask for a subgraph because removing an edge on a cycle
of positively weighted edges reduces the cost. However, we do allow
edge weights of zero because we will add ‘dummy’ edges of weight
zero in the analysis in Chapter 17. For convenience, we shall call this
problem the Steiner tree problem in the following chapters.

A terminal spanning tree is a Steiner tree that does not contain Steiner
vertices. Without loss of generality, one can replace the graph (V, E)
with its metric closure, i.e., the complete graph on V where the weight
of an edge uv is the length of the shortest path from u to v with respect
to the original weight function on the edges. A terminal spanning tree
of minimum cost in the metric closure is a 2-approximation for the
Steiner tree problem [GP68; Vaz01].

16.3 np-completeness and special cases

We will deal with two special cases of the Steiner tree problem in
graphs.

Definition 16.3.1 (Quasi-Bipartiteness and Claw-Free Instances). An
instance of the Steiner tree problem in graphs is quasi-bipartite if no
two Steiner vertices are neighbors. If for every Steiner vertex v, all
edges incident to v have the same weight, the instance is uniformly
quasi-bipartite.

A Steiner claw is a Steiner vertex with at least three Steiner vertices
as neighbors. An instance is claw-free if it does not contain any Steiner
claws.1

We will see in Section 17.3 that in these special cases, certain LP
relaxations are equivalent from the polyhedral point of view, and that
better approximation factors can be obtained.

The NP-completeness of the Steiner tree problem is widely reported
to have been proved by Karp [Kar72]. However, the proof is erroneous,
and we shall see a working proof in this section. Karp claims to prove
NP-completeness of the Steiner tree problem by a reduction from the
exact cover problem.

1 This differs from the usual definition of claw-freeness: A graph is claw-free if it does
not contain a claw as an induced subgraph. In this definition, K4 would be claw-free.

16.3 np-completeness and special cases 179

S1 S2

r

1 2 3

0 0 0 0

2 2

(a)

S1 S2

r

1 2 3

0 0 0 0

2

(b)

Figure 16.1: (a) A Steiner tree instance, constructed from an exact cover
instance U = {1, 2, 3}, S1 = {1, 2}, S2 = {2, 3} in the purported
reduction by Karp. (b) An optimum Steiner tree of this instance.

Definition 16.3.2 (Exact Cover). Given a ground set U = {1, . . . , m}
and subsets S1, . . . , Sn ⊆ U, can U be covered with a selection Si1 , . . . , Sij

of pairwise disjoint subsets, for some j ∈N?

The reduction Karp proposes is the following: Create one vertex for
every subset and one vertex for every element of U, and add a ‘root’
vertex r:

V := {r} ∪
n⋃︂

i=1

{Si} ∪U,

E := {(r, Si) | i ∈ {1, . . . , n}} ∪ {(Si, x) | i ∈ {1, . . . , n}, x ∈ Si}.
The edge weights are defined as

w(r, Si) := |Si|, i = 1, . . . , n,

w(Si, x) := 0, x ∈ Si, i = 1, . . . , n.

Consider the following exact cover instance: U = {1, 2, 3}, S1 = {1, 2},
S2 = {2, 3}. Clearly, the set U cannot be covered by pairwise disjoint
subsets, so it is a ‘no’-instance.

However, the purported reduction would create a Steiner tree in-
stance (Figure 16.1a) with edges from the root having a weight of two
each, and k = 3. A Steiner tree of weight two exists (Figure 16.1a):
Select the edge from r to S1 and all zero-weight edges, for a total
cost of two, so it is a ‘yes’-instance. Thus, this does not constitute a
reduction!

We now give a correct and surprisingly simple NP-completeness
proof, which is implicit in instances derived from set cover that exhibit
a large integrality gap (e.g., [Byr+10; KPT11]). The reduction is quite
similar to Karp’s idea. The set cover problem is defined as follows.

Definition 16.3.3 (Set Cover). Given a ground set U = {1, . . . , n} and
subsets S1, . . . , Sm ⊆ U, can U be covered with at most k ∈N subsets?

NP-hardness is immediate because vertex cover (Definition 13.0.4)
is a special case of the set cover problem. There is a greedy approx-
imation algorithm for set cover with approximation factor ln(n) + 1
[Joh74; Lov75]. Determining a (1− ϵ) ln(n)-approximation is NP-hard
for every ϵ > 0 [DS13; DS14].

180 the steiner tree problem

S1 S2 S3

r

1 2 3

(a)

S1 S2 S3

r

1 2 3

(b)

S1 S2 S3

r

1 2 3

(c)

Figure 16.2: (a) A Steiner tree instance constructed in the proof of Theo-
rem 16.3.4 from a set cover instance S1 = {1, 2}, S2 = {1, 3}, S3 =
{2, 3} on U = {1, 2, 3}. The weights are uniform. (b) An opti-
mum solution that directly corresponds to an optimum solution
S1 ∪ S3 = U of the underlying set cover instance. (c) An opti-
mum solution that does not directly correspond to an optimal
solution of the underlying set cover instance.

Theorem 16.3.4 (Partially claimed by [RV99]). The Steiner tree prob-
lem in graphs is NP-complete, even on quasi-bipartite graphs with uniform
weights.

Proof. Given a Steiner tree T for a graph G, it can be verified in
polynomial time that T spans the terminals and that its cost are
bounded by k. Thus the problem is in NP.

To show NP-hardness, we state a reduction from the set cover
problem. It is illustrated in Figure 16.2.

Given a set cover instance (n, S1, . . . , Sm), construct a graph G with
m + n + 1 vertices. Set n + 1 vertices to be terminals. Of these, n
correspond to the n elements of U to be covered. The extra terminal r
can be thought of as a ‘root’ from which the sets are selected. The m
remaining Steiner vertices correspond to the m sets. Connect r to every
Steiner vertex with weight 1. For every Si, connect the Steiner vertex
corresponding to it to all terminals corresponding to elements in Si,
each time with weight 1. Set k′ = n + k in the Steiner tree instance.

If there is a set cover of size at most k, then there is a Steiner tree of
weight n + k: Select the edges from r to the sets in the set cover, and
select the n element terminals from them in an arbitrary fashion. Note
that this is not necessarily the only optimal solution, see Figure 16.2c
for an example.

If there is a Steiner tree of weight at most n + k in the transformed
instance, then there must be at least one Steiner vertex that is ‘selected
from the root’ r. If for some non-root terminal t, more than one
incident edge is selected (again, see Figure 16.2c with t = 2), we apply
the following algorithm: Let (u, t) be a selected edge that goes to such
a non-root terminal t such that (r, u) is not selected. De-select (u, t)
and select (r, u) instead. This is also a Steiner tree, and its cost stay
the same. We can repeat the step until we end up with a Steiner tree
of cost at most n + k that corresponds to a set cover of size at most k.

16.4 overview of approximation algorithms 181

NP-completeness for quasi-bipartite instances was claimed without
proof by Rajagopalan and Vazirani [RV99], possibly with the above
proof in mind. A proof of NP-completeness in general graphs with
uniform weights can also be given via a reduction from 3-SAT [PS02].
The following inapproximability result is due to by Chlebík and Chle-
bíková, it uses an inapproximability result of Håstad [Hås01] for a
system of linear equations over {0, 1} with exactly three variables per
equation, where the number of satisfied equations is to be maximized.

Theorem 16.3.5 ([CC08]). It is NP-hard to approximate the Steiner tree
problem in graphs within a factor of 1.01063, even for claw-free instances,
and within 1.00791 for uniformly quasi-bipartite instances.

The addition ‘even for claw-free instances’ is our observation – the
gadgets in [CC08, Figure 1] do not contain Steiner claws, and gadgets
are only linked together at terminals [CC08, Figure 3]. An interesting
open question is if gadgets that contain Steiner claws lead to a better
inapproximability factor.

An earlier inapproximability result due to Thimm [Thi03] is, accord-
ing to [CC08], flawed, but not necessarily beyond repair.

Lichtenstein [Lic82] shows that planar 3-SAT is NP-complete, i.e., a
certain graph corresponding to the 3-SAT instance is planar. He sug-
gests that this can be used to show NP-completeness of the Steiner tree
problem on planar instances. In fact, the aforementioned reduction
from 3-SAT to the Steiner tree problem can be analogously carried
out for planar 3-SAT instances, which shows NP-completeness in the
planar case.

Theorem 16.3.6 ([Lic82]+[PS02]). The Steiner tree problem in planar graphs
is NP-complete.

However, a PTAS does exist for the planar case [BKK07].

16.4 overview of approximation algorithms

Based on an ILP, the so-called undirected cut formulation, it is possible
to obtain a 2-approximation for the Steiner tree problem in graphs
with a primal-dual scheme [GW95] or iterative rounding [Jai01]. The
undirected cut relaxation has an integrality gap of two even for R = V
(i.e., the minimum spanning tree problem) [Vaz01]. Hence, it alone
cannot be used to obtain an approximation factor of less than two.

Better approximation factors were achieved in a sequence of papers
[KZ97; HP99], the best being 1 + ln(3)/2 + ϵ < 1.55 [RZ00; RZ05].
These algorithms are all combinatorial and use k-restricted compo-
nents. We only discuss LP-based approximation algorithms in this
thesis, some are also based on k-restricted components.

The bidirected cut relaxation, which will be introduced in the fol-
lowing section, is strictly stronger than the undirected cut relaxation

182 the steiner tree problem

[CR94]. However, the best known upper bound on its integrality gap
is also two, and the best known lower bound is 36/31 ≈ 1.161 (see
Chapter 18). In quasi-bipartite instances, a (3/2 + ϵ)-approximation
algorithm exists [RV99], it is a variant of the primal-dual scheme.

The open question whether there is an LP relaxation with integral-
ity gap smaller than two was answered affirmatively by Byrka et al.
[Byr+10; Byr+13]. Their algorithm approximately solves the hyper-
graphic LP relaxation (HYP, see Section 16.6), which is then used to
sample a component of the graph. This component is contracted. The
algorithm continues in the same way on the contracted graph until
it has been contracted into a single vertex. Although their algorithm
provides an approximation factor of ln(4) + ϵ ≈ 1.39, they were only
able to show an integrality gap of at most 1 + ln(3)/2 ≈ 1.55. (An
alternative proof of this gap was subsequently given by Chakrabarty et
al. [CKP10b].) This discrepancy is due to the fact that the LP is solved
after each contraction. Goemans et al. [Goe+12] show how to update
the LP solution instead of re-solving, which shows an integrality gap
of ln(4) for HYP. However, solving HYP exactly is NP-hard.2

The special cases of quasi-bipartite and claw-free instances will be
discussed in Section 17.3.

16.5 the bidirected cut relaxation

In the bidirected cut relaxation (BCR), we create an auxiliary directed
graph that has two directed edges (u, v), (v, u) for every uv ∈ E,
and there are variables z(u,v), z(v,u). Both have the cost w(uv) of the
original edge in the objective function. One vertex is chosen as the
root terminal r. The goal is to find an assignment to the variables x
such that every cut S ⊆ V \ {r}, S ∩ R ̸= ∅ is crossed by at least one
edge. This ensures that there is a path from every terminal to the root.
Let δ+(S) denote the set of directed edges (u, v) with u ∈ S, v /∈ S.
The bidirected cut relaxation is as follows.

min ∑
uv∈E

w(uv)(z(u,v) + z(v,u)) (16.1)

s. t. ∑
(u,v)∈δ+(U)

z(u,v) ≥ 1, U ⊆ V \ {r} : U ∩ R ̸= ∅, (16.2)

z(u,v), z(u,v) ≥ 0, uv ∈ E. (16.3)

BCR can be shown to equivalent for all choices of the root termi-
nal [GM93]. Let us now adapt the generalized subtour elimination
constraints (Subsection 14.1.1) to the Steiner tree problem:

2 The number of constraints in HYP is exponential in the graph size. Hence, the fact
that solving it is NP-complete (in the graph size) does not violate the widely believed
hypothesis P ̸= NP via a polynomial-time algorithm for solving LPs.

16.6 the hypergraphic relaxation 183

∑
e∈E

xe = ∑
v∈V\{r}

yv, (16.4)

∑
e∈E[S]

xe ≤ ∑
v∈V

yv − yt, t ∈ S, S ⊆ V : S ∩ T ̸= ∅, (16.5)

yt = 1, t ∈ R, (16.6)

xe ≥ 0, e ∈ E, (16.7)

yv ≥ 0, v ∈ V. (16.8)

Note that Constraint (16.5) for S = V implies yv ≤ 1 for all v ∈ V,
otherwise the cardinality constraint (16.4) would be violated for the
maximum yt [Fel+16]. Goemans and Myung compared the strength
of BCR and GSEC.

Theorem 16.5.1 ([GM93]). BCR and GSEC (as in (16.4)-(16.8)) are poly-
hedrally equivalent.

The conversion from a feasible BCR solution to a GSEC solution
of the same value is simply the projection xuv = x(u,v) + x(v,u) and
yu = ∑(u,v)∈δ+({u}) z(u,v) for u ∈ V \ {r}.

Edmonds proves the following for the minimum spanning tree
problem.

Theorem 16.5.2 ([Edm67]). For a Steiner tree problem instance with R =

V, the polyhedron of GSEC is integral.

This also shows that the BCR polyhedron is integral [Byr+13], and
hence BCR has a smaller integrality gap (namely, 1) than the undi-
rected cut formulation for R = V. However, in general, the best
known upper bound is two, although it is believed that this is not
tight [RV99].

16.6 the hypergraphic relaxation

The hypergraphic relaxation was introduced by Warme [War98]. It is
a generalization of the subtour constraints to hypergraphs.

A component is a tree in G where all terminals contained in the tree
are leaves. If in addition, every leaf of the tree is a terminal, it is called
a full component. Let K denote the set of full components, and create
a variable xC for all C ∈ K. Let R(C) denote the set of terminals in
C. The cost c(C) of a full component C is the cost of a minimum

184 the steiner tree problem

Figure 16.3: A Steiner tree that is the edge-disjoint union of three full compo-
nents (dashed and dotted in red, blue and black).

Steiner tree in the component. For any t ∈ R, let (t)+0 = max(0, t).
The hypergraphic relaxation (HYP) is

min ∑
C∈K

c(C)xC (16.9)

s. t. ∑
C∈K

xC(|R(C) ∩ S| − 1)+0 ≤ |S| − 1, ∅ ̸= S ⊆ R, (16.10)

∑
C∈K

xC(|R(C)| − 1) = |R| − 1, (16.11)

xC ≥ 0, C ∈ K. (16.12)

In a full Steiner tree for a subset R′ ⊆ R of terminals the leaves are
exactly R′. Without loss of generality, we can assume that all leaves
of a Steiner tree are terminals because a Steiner leaf can be safely
removed.3 A full Steiner tree can be written as a union of edge-disjoint
full components (see Figure 16.3 for an example). Moreover, the union
of full components selected in a feasible integral solution of (16.10)-
(16.12) form a full Steiner tree. The objective value of an integral
feasible solution is exactly the cost of the corresponding full Steiner
tree.

The directed component relaxation (DCR) is the directed analog
of the hypergraphic relaxation. It was introduced by Polzin and
Vahdati Daneshmand [PD03] and was subsequently used by Fung et
al. [Fun+12] and Byrka et al. [Byr+13].

Let C denote the set of all pairs C = (r′, R′) with R′ ⊆ R and r′ ∈ R′,
the directed components. We interpret C to be the minimum Steiner tree
on R′ with total cost c(C) and all edges directed towards the sink r′,
i.e., an arborescence rooted at r′ with the direction of edges reversed.
For a set S ⊆ R, we say that C crosses S if r′ /∈ S, and S ∩ R′ ̸= ∅. Let
δ+(S) denote the set of directed components that cross S.

Fix an arbitrary root r ∈ R. The directed component relaxation
(DCR) is

3 Note that a minimum Steiner tree can only have such vertices if their incident edges
have weight zero.

16.6 the hypergraphic relaxation 185

min ∑
C∈Ck

c(C)xC (16.13)

s. t. ∑
C∈δ+(S)

xC ≥ 1, ∅ ̸= S ⊆ R \ {r}, (16.14)

xC ≥ 0, C ∈ C. (16.15)

Every Steiner tree, when viewed as an (inverted) arborescence, can
be written as a union of edge-disjoint directed components. The com-
ponents selected in a feasible integral solution form an arborescence.
If the solution is optimal, the union of the minimum Steiner trees
corresponding to these components form a minimum Steiner tree.

Theorem 16.6.1 ([PD03; CKP10a]). DCR and HYP are polyhedrally equiv-
alent.

If we only consider components (r′, R′) with |R′| ≤ k, we obtain
the set Ck of directed component of maximum size k, the k-restricted
directed components, and denote the restricted ILP as DCRk. Since there
are at most (|V|k) subsets of R of size k, we have |Ck| ∈ O(knk). An
optimum Steiner tree of a k-restricted undirected component can be
computed with the Dreyfus–Wagner algorithm [DW71] in polynomial
time if k is a fixed constant. Moreover, in this case DCRk can be solved
in polynomial time. To this end, DCRk can be re-formulated as a
multi-commodity flow problem with polynomially many constraints.
This can then be solved with a (strongly) polynomial-time linear
programming algorithm [Byr+13]. Solving DCR exactly for k = |V| is
NP-hard in general [Goe+12].

The following (rephrased) theorem of Borchers and Du shows that
solving the k-restricted LP exactly yields a good approximation.

Theorem 16.6.2 ([BD97]). Let k = 2r + s with r ∈N, s < 2r be fixed. Let
ρk denote the supremum among all Steiner tree instances of the ratio of the
optimal value of DCRk and the cost of an optimal Steiner tree. Then

ρk =
(r + 1)2r + s

r2r + s
≤ 1 +

1
⌊log2 k⌋ .

To obtain a (1+ ϵ)-approximation to DCR, one thus sets k ∈ Θ(21/ϵ).
If, for example, one sets k = 64, then the ratio is rather reasonable with
7/6 = 1.16̄. However, solving the LP then becomes too demanding in
practice. Beyer and Chimani [BC14] report surprisingly good results
for the algorithm by Goemans et al. [Goe+12] for k = 3 (ρ3 = 5/3) in
terms of both quality and runtime.

17
I T E R AT I V E R A N D O M I Z E D R O U N D I N G

17.1 the algorithm of byrka et al .

Algorithm 17.1, due to Byrka et al. [Byr+10; Byr+13], solves DCR
approximately (via DCRk), chooses a directed component C with
probability proportional to value xC, and contracts it. This is repeated
on the contracted graph until a single terminal remains. A contraction

Algorithm 17.1: (ln 4 + ϵ)-approximation algorithm for the
Steiner tree problem in graphs by Byrka et al.
Input: An edge-weighted simple graph G = (V, E) and ϵ > 0.
Output: A collection of full components whose union is a

Steiner tree.
for t = 1, 2, . . . do

Compute a (1 + ϵ/2)-approximate solution x to DCR
Ct ← draw one component C ∈ Ck with probability xC

∑C′∈Ck
xC′

G ← G/Ct

if |V| = 1 then
return

⋃︁t
i=1 Ci

G/C of a directed component C collapses the vertices of C into the
sink of C. The sink inherits the edges incident to C. If this results in
multiple edges from the sink to the same vertex outside C, all but the
cheapest are removed.

The algorithm can be derandomized [Byr+13]. The randomized
algorithm is also treated in a recent edition of a textbook by Korte
and Vygen [KV18]. Goemans et al. [Goe+12] show how to keep a
feasible solution to the LP throughout the algorithm in order to avoid
re-solving the LP. This establishes the approximation factor as an
integrality gap upper bound for HYP. Additionally, it provides a
computational advantage, which is the reason why this variant was
chosen by Beyer and Chimani for an implementation [BC14]. Note
that the number of terminals decreases with every iteration, hence the
algorithm runs in polynomial time.

A Steiner tree S, without loss of generality a full Steiner tree, can be
turned into a rooted full (but possibly noncomplete) binary tree of the
same cost by introducing dummy vertices and zero-cost edges such
that its leaves are exactly the terminals [KZ97; Byr+13]. The height of
this tree can be shown to be at most |R| − 1. We will assume in the
following that the optimum Steiner tree S∗ is such a tree; the upper

187

188 iterative randomized rounding

bounds we will obtain are upper bounds for the original tree. It helps
for an easier understanding to imagine that S∗ is complete.

Let us review the analysis of Byrka et al. As ϵ > 0 is fixed, there is
a number M polynomial in the input size1 such that

∑
C∈C t

xt
C ≤ M,

and we can require this to hold with equality in our analysis by
introducing a zero-cost dummy component C into C that consists of the
root terminal. The corresponding variable xC will provide the missing
probability mass. The modified algorithm may sample this component,
and contraction of it does not change the graph. Hence, the algorithm
could perform some idle iterations (it could potentially run endlessly),
but has the same expected objective value. Furthermore, the expected
number of iterations until an edge is contracted is bounded from
above by that number in the modified algorithm.

Let us consider the expected cost of the solution the modified algo-
rithm returns. Let OPTt and OPTt

f denote the cost of the minimum
Steiner tree and the cost of the optimum fractional DCR solution in the
t-th iteration, respectively. We state the relevant sampling iterations in
the subscript of the expected values2 and in the superscript of xt

C, C t
k,

the solutions and the set of k-restricted components on the contracted
graph in iteration t.

∑
t≥1

Et
[︁
c(Ct)

]︁
≤ ∑

t≥1
Et−1

⎡⎣ ∑
C∈C t

k

xt
C

M
c(C)

⎤⎦
≤ 1

M ∑
t≥1

Et−1

[︂
(1 + ϵ/2)OPTt

f

]︂
≤ 1 + ϵ/2

M ∑
t≥1

Et−1

[︂
OPTt

f

]︂
≤ 1 + ϵ/2

M ∑
t≥1

Et−1
[︁
OPTt]︁ . (17.1)

Let S∗ denote an optimal (without loss of generality, binary) Steiner
tree for the instance with cost OPT = ∑e∈S∗ c(e). The deletion time
D(e) of an edge e ∈ S∗ is the number of iterations the algorithm takes
until the edge is removed by a contraction. After all edges of S∗ have
been deleted, it is guaranteed the graph has been contracted into a
single terminal. Let S1 = S∗, and let St be St−1 minus the edges in
the t-th sampled component (and possibly duplicate edges that are
eliminated). For any t′ ≥ 1 the graph

St′ ∪
t′−1⋃︂
t=1

Ct

1 Chakrabarty et al. [CKP10a] show that the support of a basic feasible solution has
cardinality at most |R|, hence this can be used as an upper bound.

2 E0[·] means that no previous sampling has occured.

17.1 the algorithm of byrka et al . 189

spans R. For the cost, we have

∑
t≥1

Et[c(Ct)]
(17.1)
≤ 1 + ϵ/2

M ∑
t≥1

Et−1[OPTt]

≤ 1 + ϵ/2
M ∑

t≥1
Et−1[c(St)]

=
1 + ϵ/2

M ∑
e∈S∗

E[D(e)]c(e), (17.2)

since an edge e is part of St if and only if it survives the first t− 1
iterations. If we can bound E[D(e)] ≤ α ·M for every e ∈ E for some
α ≤ 2, we get

∑
t≥1

Et[c(Ct)]
(17.2)
≤ 1 + ϵ/2

M
α

M ∑
e∈S∗

c(e) ≤ (α + ϵ)OPT, (17.3)

the desired approximation factor.
In order to keep track of the edges that are deleted in the course

of the algorithm, an artificial witness tree that spans the terminals
will be constructed for the analysis. For now, let W be any choice
of such a tree. An example can be seen in Figure 17.1a on page 193.
Each edge e = (u, v) ∈ S∗ partitions the terminals R into two sets,
the terminals Ru that are connected by the subtree of S∗ rooted at
u and the terminals Rv connected by the subtree of S∗ rooted at v.
The witness edges W(e) ⊆W are the edges in the witness tree that go
between terminals of Ru and Rv, hence they model how e connects the
terminals. More precisely,

W(e) := {uv ∈W | e is on the path from u to v in S∗} .

When a component is sampled and contracted by the algorithm, a
corresponding (random) subset of W is marked for the analysis. As
soon as all edges W(e) have been marked, we can conclude that e ∈ S∗

has been contracted, which has brought us closer to termination. The
expected time until this happens is an upper bound for E[D(e)].

Given a directed component C with terminals S, which witness
edges can be marked that correspond to the connectivity that C pro-
vides?

Definition 17.1.1. For a witness tree W and R′ ⊆ R, the family of
bridge sets is

BW(R′) := {B ⊆W | (W \ B)/R′ is a tree}.

The following technical lemma, absent from [Byr+13], establishes
correctness of the marking procedure.

Lemma 17.1.2 ([KV18]). Let W =: W0 be a tree on R, t ∈ N, and
C1, . . . , Ct ∈ Ck. For i = 1, . . . , t, let Bi ∈ BWi−1/C1/···/Ci−1(R) and

190 iterative randomized rounding

Wi := Wi−1 \ Bi. Then all terminals are in the same connected component
of

{e ∈ E(S∗) |W(e) ∩Wt ̸= ∅}/C1/ . . . /Ct.

Byrka et al. consider a random variable W, i.e., the witness tree
is chosen from a certain probability distribution of trees on (R

2). In
our opinion, both the reasoning behind the overall analysis and the
specific choice of the witness tree distribution of Byrka et al. are rather
obscure. We therefore give an attempt at an intuitive explanation
and will postpone specific witness tree distributions to the following
sections. A witness tree chosen deterministically without regard to the
cost of the edges in S∗ would be prone to an ‘adversary’ that chooses
the edge cost in order to maximize deletion times of costly edges.
Thus for an analysis that does not assume anything about the edge
cost, the risk is spread out over a distribution of witness trees. Note
that a witness tree edge influences the size |W(e)| of several edges
e ∈ S∗.

Byrka et al. choose a witness tree distribution that we shall describe
as the result of a greedy randomized algorithm. This algorithm prefers
edges for W that connect terminals close to each other. This ensures
that overall, the sizes |W(e)| are small with a high probability for each
e ∈ S∗. However, W(e) can be large with a small probability as well,
this helps to keep W(e′) small for other edges e′ ̸= e. We shall see in
Theorem 17.1.5 that the expected time until all edges in a subset of W
are marked depends logarithmically on the size of the set: Because the
logarithm increases slowly, we should assign smaller, but non-zero
probabilities to larger sets for an optimal balance.

Byrka et al. never state why they choose their specific distribution,
and if it is (in the cost-oblivious sense) optimal, at least asymptotically
with growing tree height.

Once the distribution has been chosen, Byrka et al. show that every
edge e ∈ W is marked with probability at least 1/M in an iteration
of the algorithm. It is important to stress that the algorithm does not
mark the edges of W. Rather, the random marking is performed in the
analysis in such a way that the probability bound of 1/M holds. As
we understand it, this is an existential argument that the randomness
of the algorithm can be captured with respect to an arbitrary witness
tree distribution by choosing suitable distributions for the marking
procedure (which are never explicitly used in the analysis).

In order to do so, we need to relate the cost of a terminal spanning
tree (in particular, our witness tree W) to the cost of any fractional
DCR solution.

Lemma 17.1.3 (Bridge Lemma, [Byr+13]). Let W be a terminal spanning
tree and x be a feasible solution to DCR. Let

brW(C) := max{c(B) | B ∈ BW(R(C))}.

17.2 witness tree distributions 191

Then

c(W) ≤ ∑
C∈C

xCbrW(C).

A sketch of the proof is as follows. First, a terminal spanning tree
is constructed for every component C of weight brW(C). From these
terminal spanning trees, a fractional solution y : R× R→ R+

0 to BCR
of cost

c(y) = ∑
e∈R×R

w(e)y(e) = ∑
C∈C

xCbrW(C)

is constructed. By Theorem 16.5.2, BCR is integral for terminal span-
ning trees, hence there is an integral optimal BCR solution, i.e., a
terminal spanning tree T. The cost of T can be shown to be a most
c(y).

We now give the existential lemma for the marking procedure.

Lemma 17.1.4 ([Byr+13]). Let W ⊆ (R
2) be a tree on R. There is a proba-

bility distribution

BrW : BW(C)→ [0, 1]

such that each edge e ∈ W is marked with probability at least 1/M in each
iteration.

The proof is by contradiction, we give a sketch. Assuming there
are no such probability distributions BrW(·), Farkas’s Lemma (Corol-
lary 2.11.7) would imply the existence of a vector (y, c) ∈ R|C|×|W|

such that

∑
C∈C

xCbrW(C) ≤ ∑
C∈C

yC < ∑
e∈W

ce = c(W),

contradicting the Bridge Lemma 17.1.3.
Using the previous lemma, it is shown that all edges of W(e) are

marked within a small number of iterations. This is a variant of the
Coupon collector problem (see Subsection 2.4.1):

Lemma 17.1.5 ([Byr+13]). Let W̃ ⊆ W. For the number X(W̃) of itera-
tions until all edges in W̃ are marked, we have

E[X(W̃)] ≤ H|W̃| ·M, (17.4)

where Hn is the n-th Harmonic number.

The proof is by induction over |W̃|. We now have the necessary tools
to prove approximation factors for a given witness tree distribution.
For convenience in the following sections, we provide Table 17.1 on
the next page with the first six values of Hn.

192 iterative randomized rounding

Table 17.1: The first six harmonic numbers.

Harmonic Number H1 H2 H3 H4 H5 H6

Fraction 1 3
2

11
6

25
12

137
60

49
20

Decimal value 1 1.5 1.83 2.083 2.283 2.45

17.2 witness tree distributions

Byrka et al. choose the following witness tree distribution. Recall that
S∗ is a full binary tree of height h ≤ |R| − 1. For every Steiner vertex
in S∗, choose one of its edges to its two children with equal probability.
Let B denote the set of chosen edges, and let Puv denote the unique
path from u to v in S∗. The witness tree is chosen as

W =

{︃
uv ∈

(︃
R
2

)︃ ⃓⃓
|Puv ∩ B| = 1

}︃
. (17.5)

An example is given in Figure 17.1a on the facing page. Such a witness
tree W on a complete Steiner tree of a given height h always has the
same structure up to isomorphism. In particular, the set of witness
set sizes {|W(e)|}e of edges e on a given level l are the same for every
complete Steiner tree.

Lemma 17.2.1 ([Byr+13]). Let W be chosen on a Steiner tree S∗ as in
Equation (17.5). Then for every edge e ∈ S∗ at level le ≤ |R| − 1 (where
edges incident to the root are at level one), we have

Pr[|W(e)| = q] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/2q, if 1 ≤ q < le,

2/2q, if q = le,

0, otherwise.

(17.6)

We give an alternative way of generating this distribution.

Proof for complete Steiner trees S∗. We describe a randomized greedy
algorithm to construct a witness tree W, and use the following nomen-
clature. Let S be a proper subtree of S∗ rooted at rS, and let p denote
the parent of rS. The subtree S′ rooted at p’s other child is the neigh-
boring subtree of S.

The algorithm starts at the leaves of S∗ (the terminals) and works
upward through the tree. Every subtree S is linked to its neighboring
subtree S′ by a W-edge between a leaf of S and a leaf of S′. Between
all leaves of S with maximum degree in the current W, we choose one
uniformly at random, the same is done for S′. Once all subtrees at
level l have been connected to their neighbor, we proceed with the

17.2 witness tree distributions 193

t1 t2

2

1 1

1 1 2

3 1 2 1 1 2 3 1

(a)

r1 r2

t1 t′ t2

1 + 1 1 + 1

2 + 1

3 + 1

2− 1

3− 1

1 1

1 2 1 1 2 1

(b)

Figure 17.1: (a) A witness tree (blue arcs) of the Byrka distribution for an
optimal binary Steiner tree S∗. The cardinalities W(e) are shown
on the edges of S∗. One edge e ∈ S∗ is shown in bold, the
set W(e) of its witness edges is also shown in bold. (b) A
modification of the witness tree as described in the proof of
Theorem 17.2.6 is shown. The dotted witness edge (t2, t′) is
removed and the bold edge (t1, t′) is added. The total witness
set sizes per level stay the same except for the topmost level, and
they are favorable.

subtrees at level l− 1 in the same fashion. There are exactly two leaves
of maximum degree in W in every subtree (not counting a single
terminal as a subtree) before the next step. Note that the lowest level
is chosen deterministically: there is only one terminal in the subtree,
which is linked to the neighboring terminal via an edge.

Since the tree is complete, the sizes of W(e) are identically dis-
tributed for all edges e on the same level. This follows inductively
from the construction: If we have identical distributions on a level
l, then the uniform selection process ensures this on level l − 1. As
the lowest level is chosen deterministically, its set sizes are identically
distributed in particular.

The probabilities Pr[|W(e)| = q] in the complete case are now easily
calculated from the following argument: With every level l, the witness
set sizes are set to one for level l by the construction in the algorithm,
and the set sizes on the levels below increase by one on exactly half

194 iterative randomized rounding

the edges whose set size is maximum on that level in the current W.
Therefore, the probabilities are as claimed.

The rationale behind the algorithm in the above proof is as follows.
An edge uv in W that has a long path Puv in S∗ is undesirable, as it
adds to the size of many sets W(e). Hence, neighboring subtrees are
chosen in order to keep the pathlength small. Which terminal should
be chosen for connecting two subtrees? The pathlengths are the same
for all choices if S∗ is complete. As the time until all edges in a set
W̃ ⊆W are marked increases logarithmically with the size of the set
by Lemma 17.1.5, we should greedily select the vertices that have the
highest degree.

It is easy to see from the iterative construction that the topmost k
levels of the (transformed) Steiner tree S∗ have the same witness set
sizes as a Steiner tree of height k, assuming completeness for both. The
lowest level has the highest witness set sizes on average, and hence
determines the maximum expected deletion time. Note also that the
maximum degree in W is exactly the height h of the tree.

Let us now prove the main result of Byrka et al.

Theorem 17.2.2 ([Byr+13]). There is a randomized polynomial-time ap-
proximation algorithm for the Steiner tree problem in graphs with expected
approximation factor ln(4) + ϵ < 1.3863 + ϵ for every ϵ > 0.

Proof. From complex analysis one knows the function

Li1(z) = ln(1/(1− z)) = ∑
q≥1

zqq−1.

Therefore,

∑
q≥1

1
2q−1 q−1 = 2 ln

(︄
1

1− 1
2

)︄
= ln(4). (17.7)

Let D(e) = max{t | e ∈ St} denote the iteration in which e is deleted.
By Lemmata 2.4.8 and 17.1.5 the expected deletion time of e ∈ S∗ is

E[D(e)] =
ke

∑
q=1

Pr[|W(e)| = q]E[D(e) | |W(e)| = q]

≤
ke

∑
q=1

Pr[|W(e)| = q]Hq M

(17.6)
≤

ke

∑
q=1

(︃
1
2

)︃q

Hq M + 2/2ke Hke M

≤ ∑
q≥1

(︃
1
2

)︃q

Hq M

= M ∑
q≥1

1
q ∑

i≥0

(︃
1
2

)︃q+i

17.2 witness tree distributions 195

= M ∑
q≥1

1
q

(︃
1
2

)︃q−1

(17.7)
= M ln(4).

Therefore, the expected cost of the solution returned by the modified
algorithm satisfy

E

[︄
∑
t≥1

c(Ct)

]︄
= ∑

t≥1
Et[c(Ct)]

(17.3)
≤ 1 + ϵ/2

M ∑
e∈S∗

E[D(e)]c(e)

≤ (ln(4) + ϵ)OPT, (17.8)

and this bound also holds for Algorithm 17.1 on page 187.

The algorithm can be derandomized.

Theorem 17.2.3 ([Byr+13]). There is a polynomial-time approximation al-
gorithm for the Steiner tree problem in graphs with approximation factor
ln(4) + ϵ < 1.3863 + ϵ for every ϵ > 0.

Byrka et al. further prove that 1.55 is an upper bound on the inte-
grality gap of HYP. A short proof of this was provided by Chakrabarty
et al. [CKP10b].

As described earlier, Goemans et al. modify the algorithm such
that DCR is not re-solved after each contraction. Instead, a feasible
solution to the original LP is maintained by a greedy procedure on
a certain matroid. The approximation factor then establishes a gap
upper bound.

Theorem 17.2.4 ([Goe+12]). The integrality gap of DCR is at most ln(4).

Since Byrka et al. do not provide insight how they came to chose
their distribution in the general case, or if it is the optimal choice, we
tried to come up with a better choice.

Proposition 17.2.5. There is a witness tree distribution W̃ on a complete
binary Steiner tree of four terminals with maxe∈E E[D(e)] = 32/26M <

1.231M, as opposed to the bound 1.25M, which one obtains from (17.4) with
the Byrka distribution.

Proof. The distribution of Byrka et al. consists of four trees of probabil-
ity 1/4 each. In each such tree W, there are two ‘terminal edges’ (i.e.,
edges incident to a terminal) with |W(e)| = 2 and two ‘Steiner edges’
(i.e., incident to a Steiner vertex) with |W(e)| = 1 (see Figure 17.2a on
page 197). Hence,

E[D(e)] = M · H1 = M.

for Steiner edges and for edges e incident to a terminal, we have

E[D(e)] = M
(︃

2
4

H1 +
2
4

H2

)︃
= M · 5

4
= 1.25M.

196 iterative randomized rounding

In addition to these trees, we consider the four trees where one
terminal has degree three, each with probability 1/4 (see Figure 17.2b
on the next page). In each such tree W ′, there are three terminal edges
with |W ′(e)| = H1 and one with |W ′(e)| = H3. The Steiner edges both
have |W ′(e)| = H2. For edges incident to a terminal vertex, we thus
have

E[D(e)] = M
(︃

3
4

H1 +
1
4

H3

)︃
= M · 29

24
= 1.2083M.

For edges between Steiner vertices, we have

E[D(e)] = M · H2 =
3
2

M.

A convex combination of the two distributions yields a mixture
distribution, which is advantageous.3 Let us choose the Byrka dis-
tribution with probability x and with probability (1− x) the latter
degree-3 distribution. For terminal edges, we obtain

5
4

x +
29
24

(1− x),

and for the Steiner edges, we have

x +
3
2
(1− x).

We equate the two, because if one of the two terms were strictly larger
than the other, we could decrease the maximum of the two by shifting
mass from or to x. By solving this equality for x one obtains the
optimum objective 32/26 < 1.231 at x = 7/13.

In fact, we can also describe a distribution which is better than the
one by Byrka et al. for all heights (on complete trees), but only equally
good in the limit.

Proposition 17.2.6. For every complete binary Steiner tree S∗ of height h ≥
2 there is a witness tree distribution W̃ for which the expected deletion time
bound (17.4) of each edge is smaller than the maximum expected deletion
time bound for the Byrka distribution.

Proof. Consider the random witness tree W that the greedy random-
ized algorithm outputs. There are two terminals t1, t2 of maximum
degree in W, and there is an edge (t1, t2) ∈W. Note that the set sizes
on the path from t1 to the root and on the path from t2 to the root are
the same (see Figure 17.1a on page 193 for an example).

Let us modify the tree as follows for a distribution W ′ (Figure 17.1b
on page 193). Choose one of the two said terminals uniformly at

3 There are 44−2 = 16 possible terminal spanning trees, but the remaining eight are
clearly worse than the ones presented. Hence, by computing the optimum distribution
on the eight trees mentioned, we obtain the optimum approximation factor one can
get from a cost-oblivious analysis.

17.2 witness tree distributions 197

H1 H1

H2 H1 H2 H1

H1 H1

H1 H2 H1 H2

H1 H1

H1 H2 H2 H1

H1 H1

H2 H1 H1 H2

(a)

H2 H1

H3 H1 H1 H1

H1 H2

H1 H1 H1 H3

H1 H2

H1 H1 H3 H1

H2 H1

H1 H3 H1 H1

(b)

Figure 17.2: (a) The four equiprobable witness trees from the distribution
proposed by Byrka et al. The expected number of iterations until
all edges in W(e) are marked, divided by M, is shown on each
edge e. (b) Four witness trees where the expected deletion time
is smaller on the edges of the lower level, yet larger on the edges
of the upper level.

198 iterative randomized rounding

random, say t2. It has an edge in W to a terminal t′ whose degree is
one less. Delete the edge (t2, t′) and add the edge (t1, t′) in W. From
the logarithmic nature of the marking procedure (Lemma 17.1.5) it
follows that the lowest level has improved because the largest set size
was once increased and once decreased, and the other set sizes are
unaffected. The levels above do change: Let T2 be the smallest subtree
that contains both t2 and t′, it has height h− 1 by construction. The set
sizes on the path from t2 to its subtree root r2 of T2 decrease by one.
The set sizes on the path from t′ to r2 do not change. Likewise, the
set sizes on the path from t1 to the root r1 of the containing subtree T1

increase by one. Again, this means that these levels improve because
of the logarithmic nature of the expected deletion time. The topmost
level remains: In the original distribution W, both set sizes are always
one. They both increase to two, hence we have an expected deletion
time of H2 ·M = 1.5M on each of them in W ′.

We now create a mixture distribution W̃: Choose the modified
distribution W ′ with some probability 0 < p < 2(ln 4− 1) < 0.773,
and the original one W by Byrka et al. with probability 1− p. The
optimum choice for h = 2 is exactly p = 6/13 (see the proof of
Proposition 17.2.5). For h ≥ 4, the maximum expected set size for W
is greater than 4/3. Choosing, say, p = 2/3 results in better expected
deletion times on all levels in W̃: the expected sizes on the topmost
level become 2/3 · H2 + 1/3H1 = 4/3. (Note that this is significantly
better than the limit upper bound ln 4 of the maximum expected size
in W.) The lower levels improve slightly because p > 0. For h = 3, the
maximum expected size for W is 4/3, and p can be chosen suitably to
improve over it.

Unfortunately, the improvement vanishes as the tree height grows
to infinity. Is there hope to get an improvement in the limit? We think
the answer is no. A heuristic argument is as follows. Let α < ln 4 be
arbitrarily close. There is a complete binary tree of some (minimal)
height h such that the expected deletion times on the lowest level are
at least αM in the Byrka distribution. Now increase the tree height
further, say, to h′ = 22h

. Now only the first h levels have an average
expected deletion time less than αM, as the average set sizes increase
with every level. This means that if we wish to modify W in order
to get the average expected deletion time below αM on the lower
levels, we would have to move the burden to the h topmost levels as
in Propositions 17.2.5 and 17.2.6. However, there are only 2h edges
on these levels, and there are two edges in W of maximum degree
22h

. There are also two edges of degree 22h − 1, four of degree 22h − 2,
eight of degree 22h − 3 etc. Hence, it seems out of the question that the
h upper levels can increase their set sizes to allow for a (significant)
decrease on the lower levels.

Of course, the argument would apply to any distribution with
similar properties. The greedy recursive nature of the algorithm could

17.3 quasi-bipartite and claw-free instances 199

lead to a proof that every distribution with such properties must
be almost identical to the constructed one, such as our example in
Proposition 17.2.6. This, however, seems much more difficult to us
than the usual optimality proofs for greedy algorithms.

The argument is similar if we are not interested in the maximum
expected deletion time, but the total expected deletion times, where
the same approximation factor is approached in the limit. The total
expected deletion times are of interest for unweighted instances, as
we shall see in the following section.

17.3 quasi-bipartite and claw-free instances

Fortunately, it is possible to choose better distributions if S∗ has
a special structure, as is the case in quasi-bipartite and claw-free
instances. For quasi-bipartite instances, Byrka et al. describe a witness
tree distribution that yields a better approximation factor of 1.216 + ϵ.
Note the following equivalence.

Theorem 17.3.1 ([CKP10a; Goe+12]). HYP and BCR are polyhedrally
equivalent on quasi-bipartite instances.

While Chakrabarty et al. [CKP10a] show the two relaxations have
the same optimum objective value, they did not give a cost-preserving
polynomial-time conversion from a BCR solution to a HYP solution.
Therefore, their approach does not directly help in solving DCR on
quasi-bipartite instances. Goemans et al. [Goe+12] and independently,
Fung et al. [Fun+12], show that DCR can be solved exactly in polyno-
mial time on quasi-bipartite instances by solving BCR and converting
the solution to a DCR solution of the same value. This allows elimina-
tion of the ϵ in the approximation factor of the randomized algorithm.4

However, an ϵ > 0 is also introduced in the derandomization of the al-
gorithm in [Byr+13]. It is unclear to us whether it can also be removed
in the deterministic algorithm for quasi-bipartite instances.

Theorem 17.3.2 ([Byr+13] with [Goe+12; Fun+12]). For quasi-bipartite
instances there is a randomized polynomial-time approximation algorithm
with expected approximation factor 73/60 = 1.216. Moreover, there is a
polynomial-time approximation algorithm with factor 73/60 + ϵ for every
fixed ϵ > 0.

Proof. Consider the components of an optimum Steiner tree S∗ on a
quasi-bipartite instance (we do not use the transformation procedure
into a binary tree here). Unless a component consists of two terminals
connected by a single edge, it is a star with a Steiner vertex at its center
(see the leftmost component in Figure 16.3 on page 184). For the latter,
let k denote the number of terminals in the star. Choose one terminal

4 This was not available to Byrka et al. in their conference paper [Byr+10], and it was
apparently overlooked in the later journal version [Byr+13].

200 iterative randomized rounding

uniformly at random as a ‘hub’. Connect it to all other terminals in
the witness tree W. We now have |W(e)| = k− 1 with probability 1/k
and |W(e)| = 1 with probability 1− 1/k for each edge e of the star.
Hence,

E[D(e)] ≤
(︃

1
k

Hk−1 +

(︃
1− 1

k

)︃
H1

)︃
M =

(︃
1
k

Hk−1 +
k− 1

k

)︃
M,

which attains its maximum at k = 4. Therefore E[D(e)] ≤ 73
60 M.

If the component consists of two terminals t1, t2 (see the rightmost
component in Figure 16.3 on page 184), we add the edge e = (t1, t2)

to W, hence |W(e)| = 1 and E[D(e)] = 1. The proof by Byrka et al.
contains a subtle mistake here, because it states for every component
that all edges but one are selected for the set B̃, and by (17.5), the
edge (t1, t2) would not be part of W. Instead, terminals from other
components would connect to t1 and t2 in W, which would make the
expected deletion times worse.

Again, the algorithm can be derandomized [Byr+13, Theorem 28],
which introduces a loss in the approximation factor of (1 + ϵ) for a
choice of ϵ > 0.

Due to the simplicity of quasi-bipartite instances, it is evident that
the chosen witness tree distribution is optimal in the cost-oblivious
setting. The integrality gap result of Goemans et al. also applies for
quasi-bipartite instances.

Theorem 17.3.3 ([Goe+12]). BCR has an integrality gap of at most 73/60
for quasi-bipartite instances.

Prior to this theorem, Rajagopalan and Vazirani showed that the
integrality gap in quasi-bipartite instances is at most 3/2 [RV99]. Their
algorithm achieves a (3/2 + ϵ)-approximation. Gröpl et al. [Grö+02]
gave a combinatorial 73/60-approximation algorithm for uniformly
quasi-bipartite instances. Based on this algorithm, Chakrabarty et
al. [CKP10a] show that in this scenario, the integrality gap of HYP
(and hence also BCR) is at most 73/60. The same authors [CKP10b]
show an integrality gap bound of α for quasi-bipartite instances where
α = 1 + e−α, i.e., α < 1.279. Fung et al. [Fun+12] give a simple
sampling algorithm that achieves an expected approximation factor of
α for quasi-bipartite instances.

Inspired by the previous theorem, let us turn to claw-free instances.
We will show an approximation factor between 73/60 and ln(4). Feld-
mann et al. prove a stronger version of Theorem 17.3.1.

Theorem 17.3.4 ([Fel+16]). HYP and BCR are polyhedrally equivalent on
instances without Steiner claws.

The equivalence cannot be extended much further under reasonable
assumptions because in the same paper it was proved that deciding

17.3 quasi-bipartite and claw-free instances 201

O Z

0 10 11

H1

H1

H1

H2

H4

H2

H1

H1

H1

H2

H4

H2

H1

H1

H1

H2

H4

(a)
O Z

0 10

H1

H2

H1

H1

H1

H2

H1

H3

H6

H3

H1

H2

H1

H1

H1

H2

H1

(b)

Figure 17.3: (a) A snippet of a periodic witness tree W (blue arcs) on the
terminals (squares) of a Steiner tree in a claw-free instance. The
expected deletion times divided by M are shown on each edge
for this W. The witness tree is called a 4-hub because of the
terminals with four emanating witness tree edges. (b) A snippet
of a similarly defined periodic witness tree called a 6-hub.

equivalence of HYP and BCR for a given instance is NP-hard, even
when the Steiner vertices form a single star.

The proof of Theorem 17.3.4 uses an efficiently computable cost-
preserving map from feasible BCR solutions to feasible HYP solutions.
Hence, we can again get rid of ϵ in the randomized algorithm by solv-
ing HYP exactly via BCR. We will next choose a different witness tree
distribution tailored to claw-free instances. Sanità seems to remember5

that an approximation factor smaller than ln 4 can be obtained, but
the choice of distribution and the factor have apparently been lost.

Theorem 17.3.5. For claw-free instances, there is a randomized polynomial-
time approximation algorithm with expected approximation factor 991/732 <

1.354. Moreover, there is a polynomial-time approximation algorithm with
approximation factor 991/732 + ϵ for every ϵ > 0.

Proof. Use the algorithm of Byrka et al. with the modification that HYP
is solved exactly. In order to achieve this, solve BCR in polynomial
time and use the conversion by Feldmann et al. [Fel+16].

As a Steiner vertex has at most two Steiner neighbors, and S∗ is
acyclic, the Steiner vertices in each (undirected) component form a
path (see Figure 16.3 on page 184). We modify the optimal Steiner
tree S∗ in a similar fashion as in Section 17.1. For every Steiner vertex
with no adjacent terminal, delete it from the path by contracting it and
its two edges into a single edge whose weight equals the sum of the
two edges. (A Steiner end vertex without an adjacent terminal can be
simply removed. This can only happen if it is connected to the path
with zero weight as S∗ is an optimal Steiner tree.) For every Steiner

5 Laura Sanità, personal communication, November 2017.

202 iterative randomized rounding

vertex on the path with more than one terminal, expand the Steiner
vertex to a path of Steiner vertices, each having a single adjacent
terminal. The edge weights between these Steiner vertices are set to
zero. Now we have a path of Steiner vertices where each Steiner vertex
has exactly one terminal adjacent to it (Figure 17.3a). (For components
with exactly two terminals, we select the edge between them for W
and obtain E[D(e)] = 1M as in the proof of Theorem 17.3.2.)

For the sake of a simpler analysis, let us imagine that the path
is infinitely long. The edges near the ends of the path cannot have
greater expected deletion times, hence this assumption will provide
us with an upper bound.

We choose a probability distribution of witness trees W with the
following idea. Pick a tree on the terminals that is periodic: If we
shift it by its period along the path, we obtain the same tree. For
period P, the probability for each of the trees shifted by {0, . . . , P− 1}
is chosen as 1/P. This means that the expected deletion times of all
edges between Steiner vertices are identical, and the expected deletion
times of the edges between Steiner and terminal vertices are equal to
each other as well.

Our first attempt at a distribution is as follows and can be seen in
Figure 17.3a. Some terminals dangling from the path will be hubs with
degree four in W. (Only near the end of the path, this degree may be
smaller, the necessary modifications are straightforward.) A hub h has
one edge to each of the terminals immediately to the left and right.
Moreover, h has one edge to each of the hubs left and right, which
are immediately left and right of the aforementioned ‘neighboring’
terminals.

It is evident that (roughly) one third of the vertices are hubs. Fix
one Steiner vertex on the path. With probability 1/3, turn its adjacent
terminal into a hub as described above, and continue to declare ter-
minals as hubs on the path, each with distance three (counting only
edges between Steiner vertices) from the previous as described above.

For the next tree, shift the choice of hubs one to the right along the
path. We choose this tree with probability 1/3 as well, and then we
shift another time, again we select this tree with probability 1/3. We
call this the 4-hub distribution after the number of edges emanating
from each hub.

Let us now calculate the probabilities for the cardinalities |W(e)|.
(The cardinalities are smaller near the ends of the path, hence there is
no need for discussing them.) For the edges to the terminals, we have

Pr[|W(e)| = 1] =
2
3

, Pr[|W(e)| = 4] =
1
3

.

For the edges between Steiner vertices, we have

Pr[|W(e)| = 1] =
1
3

, Pr[|W(e)| = 2] =
2
3

.

17.3 quasi-bipartite and claw-free instances 203

We now apply Lemma 17.1.5. For edges incident to a terminal
vertex, we have

E[D(e)] = M
(︃

2
3

H1 +
1
3

H4

)︃
=

49
36
·M = 1.361 ·M.

For edges between Steiner vertices, we have

E[D(e)] = M
(︃

1
3

H1 +
2
3

H2

)︃
=

4
3
·M.

This would give us an approximation factor of 1.361 by following the
proof of Theorem 17.2.2. However, we choose another distribution of
trees and turn the two distributions into a mixture distribution by a
convex combination.

Our second ‘6-hub’ distribution follows the same idea as the first,
but here the hubs have six edges each. Each hub has edges to two
terminals to its left and two to its right, and an edge to the hub left
and the hub to the right. This is depicted in Figure 17.3b on page 201.
We shift to obtain five different trees, each is selected with probability
1/5. We again omit the discussion near the ends of a path. For the
edges to the terminals, we have

Pr[|W(e)| = 1] =
4
5

, Pr[|W(e)| = 6] =
1
5

,

and therefore

E[D(e)] = M
(︃

4
5

H1 +
1
5

H6

)︃
=

129
100
·M.

For the edges between Steiner vertices, we have

Pr[|W(e)| = 1] =
1
5

, Pr[|W(e)| = 2] =
2
5

, Pr[|W(e)| = 3] =
2
5

,

and thus

E[D(e)] = M
(︃

1
5

H1 +
2
5

H2 +
2
5

H3

)︃
=

23
15
·M.

Note that 23/15 = 1.53, which is worse than in the 4-hubs distribution.
Now let us choose with probability x the 4-hub distribution and

with probability (1− x) the latter 6-hub distribution. For terminal
edges, we obtain

49
36

x +
129
100

(1− x),

and for the Steiner edges, we have

4
3

x +
23
15

(1− x).

204 iterative randomized rounding

As in the proof of Theorem 17.2.5, we equate the two. By solving this
equality for x one obtains the optimum objective 991/732 < 1.354 at
x = 219/244.

The derandomization of Byrka et al. goes through unscathed, but a
loss in the approximation factor of (1 + ϵ) is introduced for a choice
of ϵ > 0.

We were not able to prove that our choice of distribution in Theo-
rem 17.3.5 is the best possible for claw-free instances. A linear program
solver was used to compute the optimum choice for mixture distribu-
tions of k-hubs where k ∈ {2, 3, . . . , 100} (i.e., also odd k, where we
consider two equiprobable symmetrical trees), but this does not yield
anything better than our manual choice of 4- and 6-hubs. Of course,
this does not preclude the existence of a better distribution on the set
of all spanning trees. We note that Cayley’s formula states that the
number of spanning trees on n terminals is nn−2. Most spanning trees,
however, are not useful because the pathlengths are long and thus
cause large witness set sizes. One could try to prune the search space.
For example, it appears that ‘crossing’ edges in W, i.e., two edges uv
and xy with u < x < v < y, can be replaced by ux and vy, which
contributes less to the witness set sizes.

We conjecture that the approximation factor in Theorem 17.3.5
carries over to the integrality gap and that this can be proved with
the methods by Goemans et al. [Goe+12]. The authors mention that
their results can be formulated in terms of linear progamming theory.
However, their extended version is still in the making, and it is unclear
whether a different analysis of Algorithm 17.1 automatically bounds
the integrality gap as well6. Note that the authors did treat the case of
quasi-bipartite instances separately from the general case, so possibly,
it does not follow directly.

Let us now turn to unweighted instances in the claw-free case.
Könemann7 suggested that it might be possible to refine the analysis
by taking edge costs into account: the maximum expected deletion
time among the edges is used in all previous estimates (see (17.8)).
For example, it could be possible to choose a witness tree distribution
where the expected deletion time is small for costly edges and large
for cheap edges. We will now show how uniform edge weights can be
exploited.

Theorem 17.3.6. There is a randomized polynomial-time approximation al-
gorithm for the Steiner tree problem on unweighted, claw-free instances with
expected approximation factor 1.25.

Proof. In an instance with unit weights, the cost of the optimum
Steiner tree S∗ equals the number |S∗| of its edges. As in the proof of
Theorem 17.3.5, we transform each component of S∗ such that each

6 Rico Zenklusen, personal communication, April 2019.
7 Jochen Könemann, personal communication, December 2017.

17.3 quasi-bipartite and claw-free instances 205

H2

H1 H1

H2

H1

H2

H1

H2 H2

H1

Figure 17.4: A witness tree (blue arcs) on the terminals (squares) of a Steiner
tree in a claw-free instance. The expected deletion times (di-
vided by M) are shown for this witness tree. At least half the
edges have an expected deletion time of H1M, the others have a
deletion time of H2M. The deterministic choice of witness tree
shown is well-suited for unweighted claw-free instances.

Steiner vertex is adjacent to at most one terminal. This may introduce
zero-weight edges, but this is not problematic because we will bound
their weight with one in the analysis. We do not, however, contract
paths of Steiner vertices that are not adjacent with terminals in order
to obtain exactly one adjacent terminal: The edge weights between
these Steiner vertices could add up to more than one. As before, we
get rid of ϵ by solving DCR exactly via BCR.

The choice of witness tree W is deterministic and simply a path
from the leftmost terminal to the rightmost terminal (Figure 17.4
on this page). Again, we imagine the path to be of infinite length.
Each terminal edge has E[D(e)] = 3/2 · M (except at the ends of
the path where E[D(e)] = M). The edges between Steiner vertices
have E[D(e)] = M, regardless of whether the vertex is adjacent to a
terminal. We can conclude that edges with E[D(e)] = M account for
at least half the edges in the transformed tree S∗.

By (17.2) (without the factor (1 + ϵ/2)) the expected cost satisfy

E

[︄
∑
t≥1

c(Ct)

]︄
≤ 1

M ∑
e∈S∗

E[D(e)]c(e)

≤ 1
M ∑

e∈S∗
E[D(e)]

≤ 1
M

(1.5 ·M|S∗|/2 + M|S∗|/2) = 1.25 ·OPT.

We note that Berman, Karpinski, and Zelikovsky [BKZ09] give
a combinatorial 1.25-approximation algorithm for graphs derived
from a metric with distances {0, 1, 2}.8 Previous results for complete
graphs with weights 1 and 2 are a 4/3-approximation analysis by
Bern and Plassmann [BP89] of the Rayward-Smith heuristic [Ray83],
and an algorithm with approximation factor 1.279 + ϵ by Robins and
Zelikovsky [RZ05].

8 The domain of the metric serves as the set of vertices. An edge (with unit weight)
exists between a pair of elements that are at distance 1 from each other.

18
I N T E G R A L I T Y G A P L O W E R B O U N D S

[T]he inside of a computer is as dumb as hell but it goes like mad!

— Richard P. Feynman, Feynman Lectures on Computation (1996)

As mentioned in the previous chapter, the integrality gap of BCR is
at most two. This is conjectured to be tight [KPT11], but the currently
best known lower bound is 36/31 ≈ 1.161 [Byr+13]. Instances that are
hard with respect to BCR’s integrality gap are difficult to find. Some
of the best known are instances derived from the set cover problem. In
the following sections, we will review two techniques of constructing
hard instances from the literature that can be described by ‘keep
distance and average’ and ‘iterated set cover construction’. We will
add another that we call ‘entanglement’ of two set cover instances.

18.1 goemans’s instance family

Goemans (reported in [Sin00; AC04]) constructs a family of instances
with weights 1 and 2 and n + 1 terminals for n ∈ N. The integrality
gap of these instances approaches 8/7 ≈ 1.143 as n goes to infinity.
Moreover, the case of n = 3 yields a lower bound of 12/11 = 1.09 for
planar graphs. We note that the instances do contain Steiner claws for
n ≥ 1.

The idea behind Goemans’s approach is to have a minimum distance
of four between terminals by giving the edges a weight of 2. After
adding some edges of weight 1, these distances shall not decrease.
However, the edges of weight 1 can be used in a feasible fractional
solution to lower the total cost.

Goemans’s construction is as follows (see Figure 18.1a on the next
page for n = 3). Create n + 1 terminals t0, t1, . . . , tn. The terminal t0 is
called the root, and it is convenient to choose it as the root terminal
in the BCR relaxation. Create n Steiner vertices s1, . . . , sn. Each si has
an edge to t0 and an edge to ti, both with weight two. We will now
create another 2(n

2) Steiner vertices. Between each pair (ti, tj) of the
n non-root terminals for i ̸= j, put a Steiner vertex sij with edges
(ti, sij), (sij, tj) of weight two. Connect each such sij to a Steiner vertex
s′ij with an edge (sij, s′ij) of weight one. Finally, connect each s′ij to the
Steiner vertices si and sj with an edge of weight one.

An optimal feasible integral solution has cost OPT = 4n: Clearly,
there is a feasible solution with objective 4n, for example the union
of the paths (t0, si, ti) for i = 1, . . . , n. (There are several other feasible
solutions with this objective, see Figure 18.1a.) The minimum distance

207

208 integrality gap lower bounds

t0

t1

t2 t3

s1

s′23

s′13s′12

s23

s12

s2 s3

s13

2

2

1

1

1

1

1 11

1

1

2

2

2

2

2 2

2 2

2 2

2

2

(a)

t0

t1

t2 t3

s1

s2 s3

s′23

s′13s′12

s23

s13s12

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

(b)

Figure 18.1: (a) Goemans’s construction for n = 3. The graph has n + 1
terminals (squares). The numbers indicate the edge weights.
Connecting the terminals has cost of at least twelve. One optimal
solution is shown with blue vertices and bold edges. (b) Every
directed edge in the fractional BCR solution is set to 1/3 in one
direction (from terminals towards the root), and zero in the other
(not shown). The total cost is eleven, hence the gap is at least
12/11.

between any two terminals is four. While the vertices s′ij can serve as
hubs that enable us to use less edges of weight 2, they do not allow
for an improvement of the cost.

An optimal fractional BCR solution is as follows. (The case n = 3
can be seen in Figure 18.1b.) Every non-root terminal sends 1/n to
its Steiner neighbors. Every Steiner vertex s′ij sends 1/n to sij, and
every Steiner vertex sij sends 1/n to each si and sj. The Steiner vertices
si send 1/n to the root terminal. The total cost are OPTf = 7 n

2 + 1
2 .

Hence, the ratio approaches

OPT
OPTf

=
4n

7 n
2 + 1

2

n→∞−→ 8
7
≈ 1.143.

18.2 instances based on set cover

Another good way of constructing instances with a large gap is to
use the reduction from (unweighted) set cover (see Theorem 16.3.4),
which is so straightforward that we can directly think of a set cover
instance as a Steiner tree instance. Recall that the transformed instance
is always quasi-bipartite and has uniform weights. Let n denote the
number of elements to be covered and m the number of sets. In this
and the following section, we will only consider uniform instances
where all sets have the same cardinality s, and the number of times

18.2 instances based on set cover 209

(a) (b)

Figure 18.2: (a) The Fano plane, the finite projective plane of order two.
It has seven points and seven lines (the circle being a line).
(a) By considering the set of points not on a line as a set, an
unweighted set cover instance is obtained with seven sets of
each four elements. The corresponding Steiner tree instance
with uniform weights is shown. An optimal integral feasible
solution via a selection of three sets is indicated by blue vertices
and bold edges.

an element is present in a set is the same for all elements, namely
ms/n. We note that for a choice of parameters n, m, s, there may be
several nonisomorphic set cover instances, potentially having different
integrality gaps.

Some of these set cover instances, but not all, correspond to line
configurations in the plane or block designs (in particular, Steiner
systems), or complements thereof, which have interesting connections
to other areas of combinatorics. A discussion of these topics would
carry us too far afield, the reader may consult [CD06].

Skutella (reported in [KPT11]) constructs a single instance with a
gap of exactly 8/7 from the Fano plane, the finite projective plane of
order two. The Fano plane is depicted in Figure 18.2a. It often serves
as a counterexample in combinatorics. For example, the corresponding
matroid appears frequently as a forbidden minor in matroid theory
(see, e.g., [Oxl06]).

Every line in the Fano plane goes through three points, and every
two lines intersect in exactly one point. The ground set is the set of
points {1, 2, . . . , 7}. As sets, Skutella chooses the complements of the
seven lines, i.e., the set of four points not on a line. The resulting set
cover instance is transformed into a Steiner tree instance that can be
seen in Figure 18.2b. In order to cover the ground set, three sets have
to be selected. Hence OPT = 7 + 3 = 10. There is an optimal feasible
solution to the BCR relaxation where all directed edges pointing
towards the root are selected with 1/4, and the remaining with zero,
and thus OPTf = 7 + 7/4. Hence, the integrality gap of this instance
is 8/7. If one chooses the points on the lines as sets instead (s = 3),
one obtains an instance with a worse gap (see Table 18.1 on page 211).

An analogous construction can be used for the finite projective plane
of order three. By considering the points that are not on a line as a
set, we obtain an instance with n = 13, m = 13, s = 9 and a gap of
72/65 ≈ 1.108.

210 integrality gap lower bounds

Figure 18.3: The iterated construction of Skutella’s instance for h = 2. Three
Steiner vertices (sets) have to be selected for each of the seven
copies of the original instance on the bottom, and in order to
select them, three Steiner vertices adjacent to the root have to be
selected.

Table 18.1 includes all instances with a gap of at least 1.1 for parame-
ters 1 ≤ n ≤ 7, m ≤ 2n, as well as n ∈ {8, 9}, m ≤ n. They were found
in an exhaustive search. In addition, it includes two instances with
m > n and six instances with n ≥ 10 whose gap is at least 1.1. Most of
these were constructed manually from combinatorial designs, some of
which can be found at the La Jolla covering repository [Gor19]. Several
instances whose gap is smaller than 1.1 are also included because we
will use them in the following section to construct some interesting
instances with n ≥ 10. Note that the instance with parameters n = 3,
m = 3, s = 2 is planar, and to the best of our knowledge, its gap of 1.1
is the best known lower bound for planar graphs.

Note that the combination of two set cover instances with the same
parameters n, m, s results in a set cover instance with parameters 2n,
2m, s that has twice the optimum integral and optimum fractional
objective value, and hence the same ratio. However, we chose to
include the parameters 2n, 2m, s in Table 18.1 if there are instances with
these parameters that are nonisomorphic to such combined instances.
Instances with n = 6, m = 6, s = 2 and a ratio of 1.1 are always the
combination of two n = 3, m = 3, s = 2 instances, hence they are not
included.

Byrka et al. [Byr+13] give an iterated construction for set cover
instances, which is as follows. The instances we shall construct have a
height h. The case h = 1 is exactly the set cover instance. To create an
instance of height h ≥ 2, start from the set cover instance. Let ti be a
non-root terminal of this instance. Turn each ti into a Steiner vertex,
and add m− 1 copies of this vertex, i.e., these vertices are connected to
the same original Steiner vertices as ti. Create n instances Ii of height
h− 1, and remove the root terminal including its incident edges in
each of them. The m Steiner vertices on the top level of each Ii, i.e.,
the Steiner vertices that had been adjacent to the root terminal, are
now identified with the m-fold copy of ti.

Let k be the minimum number of sets that cover all elements in
the set cover instance. Note that we have to select k Steiner vertices
for each ‘packet’ of n terminals on the bottom level, and also k for

18.2 instances based on set cover 211

Table 18.1: BCR gaps of several instances based on (unweighted) set cover
with n elements and m sets of uniform size s. The smallest number
of sets that suffices to cover an instance equals OPT− n. The ratio
OPT/OPTf is rounded down on the third digit unless periodic.

n m s OPT OPTf OPT/OPTf

3 3 3 5 4.5 1.1

4 4 3 6 5.3 1.125

5 5 2 8 7.5 1.06

5 5 3 7 6.6 1.05

5 5 4 7 6.25 1.12

6 4 3 9 8 1.125

6 6 3 9 8 1.125

6 6 5 8 7.2 1.1

6 9 4 8 7.5 1.06

6 10 3 9 8 1.125

7 7 3 10 9.3 1.071

7 7 4 10 8.75 1.142

7 7 6 9 8.16 1.102

8 4 4 11 10 1.1

8 6 4 11 10 1.1

8 8 3 12 10.6 1.125

8 8 4 11 10 1.1

9 6 3 13 12 1.083

9 6 6 11 10.5 1.047

9 9 5 12 10.8 1.1

9 9 6 11 10.5 1.047

10 6 5 13 12 1.083

10 10 4 14 12.5 1.12

11 11 5 15 13.2 1.136

12 12 8 15 13.5 1.1

13 13 6 17 15.16 1.120

13 13 9 16 14.4 1.107

212 integrality gap lower bounds

each packet of m Steiner vertices on the levels above. The value of the
optimum integral solution is

OPT = nh +
h−1

∑
i=0

kni = nh + k
nh − 1
n− 1

.

Now consider fractional solutions. We send n
ms from every non-root

terminal to its adjacent Steiner vertex. The Steiner vertices adjacent
to the root terminal also each send n

ms to the root. All other Steiner
vertices send n2

m2s2 . The (optimal) feasible fractional solution has value

OPTf = nh−1 n
ms

ms +
n

ms
m +

h−2

∑
i=0

nim2s
n2

m2s2 = nh +
n
(︁
nh − 1

)︁
(n− 1)s

.

When Skutella’s instance is iterated (Figure 18.3 on page 210), the
optimum integral solution has value 3

2 7h − 1
2 . The optimum fractional

solution has value 31
24 7h − 7

24 . The gap thus approaches 36/31 ≈ 1.161
as h→ ∞ [Byr+13]. This is the currently best known gap lower bound
for BCR. We note that the iterated construction generates Steiner claws
for h ≥ 2 in all non-trivial set cover instances, hence 36/31 is not
necessarily a lower bound for HYP. Skutella’s instance provides us
with a HYP lower bound of 8/7 because it is quasi-bipartite.1

Using different instances with the same gap may yield different
outcomes in the iterated construction. For example, the instance

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
with parameters n = 4, m = 4, s = 3 has integrality gap 9/8, just as
the instance

{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}
with parameters n = 6, m = 4, s = 3. The gaps when iterating once
(h = 2) are 39/34 ≈ 1.147 for the former and 57/50 = 1.14 for the
latter, i.e., the resulting gaps may be different. Hence, even if we found
only one new instance with gap 8/7, this might result in a better gap
than Skutella’s instance when using the iterated construction!

The construction can be generalized by using different set cover
instances per level, or even different instances on a single level. This,
however, does not seem to be of advantage.

18.3 entanglement

In the following, we denote the integrality gap of an instance by g.
Consider the sets

({1, 2, 3}, {1, 2, 5}, {1, 4, 5}, {2, 3, 4}, {3, 4, 5})
1 Feldmann et al. [Fel+16] show, using an iterated construction of the instance n =

3, m = 3, s = 2 with an additional vertex, that the worst-case ratio of the integrality
gaps of HYP and BCR is at least 8/7. The authors leave it as an open question if
Skutella’s instance yields a better lower bound.

18.3 entanglement 213

for set [5] = {1, 2, 3, 4, 5} in this arbitrary, but fixed order (Figure 18.4a
on the following page). Two sets are necessary to cover, so we have

OPT = 2 + 5 = 7, OPTf = 5 + 5/3, g = 1.05.

One observes the following: While two sets suffice to cover [5], e.g.,
{1, 2, 3} and {3, 4, 5}, not every pair of sets achieves this, for example
{1, 2, 3} and {1, 2, 5}. There are (5

2) = 10 ways of selecting two sets.
We call a pair of sets (and their corresponding Steiner vertices) covering
if their union covers set [5]. One observes that five of the possible pairs
cover [5] and five do not. We call the number of covering pairs (or
more generally, covering k-tuples) the covering number of the instance.
We now demonstrate how to use this to our advantage: Add another
five terminals to the corresponding Steiner tree instance. If we can
connect the five Steiner vertices to these new terminals such that

1. the Steiner vertices and the new terminals correspond to a set
cover instance with n = 5, m = 5, s = 3,

2. every covering pair of Steiner vertices for the original five termi-
nals of [5] is a non-covering pair for the new terminals,

3. every covering pair of Steiner vertices for the new five terminals
is a non-covering pair for the original five terminals of [5],

then we force selecting three Steiner vertices (instead of two) in the
integral solution.

We performed an exhaustive search with a computer program that
considered all (5

3) = 10 possible sets of three elements, (10
5) = 252

ways of selecting five of these sets, and 5! ways of ordering each of
them (i.e., set the mapping to the Steiner vertices). The program found
ways of satisfying 1.-3., for example

({1, 2, 5}, {2, 3, 4}, {1, 3, 5}, {1, 3, 4}, {2, 4, 5}).

The solution was verified manually to rule out an error in the program.
We say that the resulting Steiner tree instance is entangled. It is depicted
in Figure 18.4b on the next page. Let us look at the feasible integral
and fractional solutions. We have to select three sets, but now there
are ten terminals. We install 1/3 on every edge in the BCR solution.
We have

OPT = 3 + 10 = 13, OPTf = 10 + 5/3, g = 39/35 ≈ 1.114,

which is much better than in the original instance. An ILP solver was
used to verify the integrality gap.

It is important to note that an instance constructed in this way is a
set cover instance on twice the number of elements, and could have
been found by other means such as brute force. However, by the above

214 integrality gap lower bounds

B D E

1 2 3 4 5

A C

(a)

B E

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

A C D

(b)

Figure 18.4: (a) An instance of the Steiner tree problem in graphs, derived
from a set cover instance. The terminals 1-5 are to be covered
by sets corresponding to the Steiner vertices A-E. Selecting two
sets via the dashed edges from the root terminal suffices, e.g., A
and C. Not every pair of sets is covering, e.g., A and B. (b) Five
additional terminals 1′-5′ are added and connected to the Steiner
vertices A-E. The five edges from the unlabeled root terminal to
the Steiner vertices are only hinted at by dashes in order to avoid
obscuring the other edges. It is impossible to cover all terminals
by selecting just two Steiner vertices. An optimal solution with
three is shown.

discussion we now know why this instance is difficult with respect to
BCR.

We wondered whether the same trick works for other instances as
well, and found that this is sometimes the case. Note that the number
C1 of covering k-tuples in an instance need not be equal to the number
(m

k)− C2 of noncovering k-tuples in the other instance, C1 ≤ (m
k)− C2

suffices to make a pair of instances candidates.
In the following, we will not report ‘uninteresting’ instances: If for

some choice of parameters n, s, there is an instance where k sets must
be selected, then we do not check whether entanglement is possible
for instances with these parameters where less than k sets suffice, as
these will have a worse gap.

Table 18.2 on page 216 shows all interesting instances that are
candidates, i.e., their covering numbers make them candidates for
entanglement, for parameters n ≤ 7, m ≤ 2n and 8 ≤ n ≤ 9, m ≤ n.
We also include two instances with n = 10 and an instance with n = 6,
m = 14. The computational power required to perform experiments
beyond n = 7 is enormous.

As indicated in Table 18.2, we found several instances where entan-
glement is possible. We only list a few that exhibit a rather large gap;
we arbitrarily choose one if several nonisomorphic instances exist:

({1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5});
({1, 2}, {4, 5}, {1, 3}, {2, 4}, {3, 5}),

18.3 entanglement 215

for n = 5, m = 5, s = 2 for covering triplets, and

({1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6},
{1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6});
({1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6},
{1, 3, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}),

for n = 6, m = 9, s = 4 for covering pairs, and

({1, 2, 4, 6, 8, 9}, {1, 2, 5, 6, 7, 9}, {1, 3, 4, 7, 8, 9},
{1, 3, 5, 6, 7, 8}, {2, 3, 4, 5, 6, 9}, {2, 3, 4, 5, 7, 8});
({1, 2, 5, 6, 7, 9}, {1, 3, 4, 7, 8, 9}, {1, 3, 4, 6, 8, 9},
{2, 3, 4, 5, 6, 7}, {2, 3, 4, 5, 6, 8}, {1, 2, 5, 7, 8, 9}),

for n = 9, m = 6, s = 6 for covering pairs, and

({1, 3, 5, 6}, {1, 3, 5, 7}, {1, 4, 6, 8}, {1, 4, 7, 8},
{2, 3, 6, 8}, {2, 3, 7, 8}, {2, 4, 5, 6}, {2, 4, 5, 7});
({1, 3, 5, 6}, {1, 4, 7, 8}, {1, 4, 6, 8}, {1, 3, 5, 7},
{2, 3, 7, 8}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 3, 6, 8}),

for n = 8, m = 8, s = 4 for covering triplets, and

({1, 6, 9}, {1, 7, 8}, {2, 4, 8},
{2, 5, 7}, {3, 4, 9}, {3, 5, 6});
({1, 6, 9}, {1, 7, 8}, {3, 4, 9},
{3, 5, 6}, {2, 5, 7}, {2, 4, 8}),

for n = 9, m = 6, s = 3 for covering quadruplets.
Unfortunately, the instances on six elements that would yield a

hypothetical gap of 8/7 ≈ 1.143 (the same as Skutella’s instance!) do
not admit entanglement.

The effect of forcing the selection of one additional set is counterbal-
anced by the increased number of terminals. It is thus evident that our
technique will not lead to improvements for instances with even mod-
erately large n. For example, there is an instance with n = 8, m = 8,
k = 3 that has a gap of 9/8. The hypothetical entangled instance
on 16 elements (see Table 18.2) would also have a gap of 9/8. Here,
entanglement is not possible. We note that there are instances for
these parameters that are non-isomorphic to the instance derived from
the lines of the Kantor–Möbius configuration, which has 30 covering
quadruplets out of 70.

In Skutella’s instance (n = 7, m = 7, s = 4), 28 of the (35
3) = 35

triplets of sets are covering, and 7 are non-covering. There are instances
with n = 7, m = 7, s = 3 that have 28 non-covering triplets and 7

216 integrality gap lower bounds

Table 18.2: Uniform set cover instances that are candidates for entanglement.
There can be several possible combinations of covering numbers
that need checking, see Table 18.3. The number k of sets needed
to cover n elements is OPT − n. The hypothetical gap (rounded
down on the third digit unless periodic) is the gap of the instance
with 2n elements constructed by entanglement, if this is possi-
ble. An asterisk indicates that not all experiments were fully
performed due to time constraints.

k n m s Gap Hypoth. gap Possible (combinations)

2 4 4 2 1 1.1 yes (all)

2 4 6 2 1 1.1 yes (all)

2 5 5 3 1.05 1.114 yes (all)

2 6 8 3 1 1.071 yes (all)

2 6 9 4 1.06 1.1 yes

2 6 12 3 1 1.071 yes (all)

2 6 12 4 1.06 1.1 no

2 7 14 4 1.029 1.1 yes (all)

2 8 8 5 1.041 1.079 yes (some)

2 9 6 6 1.047 1.076 yes (some)

2 9 9 6 1.047 1.076 yes (some*)

3 5 5 2 1.06 1.12 yes (all)

3 5 10 2 1.06 1.12 yes (all)

3 6 9 2 1 1.06 yes (all)

3 6 10 3 1.125 1.142 no

3 6 12 2 1 1.06 yes (all)

3 6 12 3 1.125 1.142 no

3 6 14 3 1.125 1.142 no

3 7 7 3 1.071 1.102 yes (some)

3 7 14 3 1.071 1.102 yes (all)

3 8 8 4 1.1 1.1 yes (one)

3 9 9 4 1.06 1.086 yes (some)

3 10 5 4 1.04 1.06 yes (all)

3 10 6 5 1.083 1.09 yes (all)

4 8 8 3 1.125 1.125 no

4 9 6 3 1.083 1.125 yes (some)

18.3 entanglement 217

Table 18.3: Covering numbers for the instances of Table 18.2 that make them
candidates for entanglement.

k n m s Relevant cov. numbers (m
k)

2 4 4 2 2 6

2 4 6 2 3 15

2 5 5 3 5 10

2 6 8 3 1, 2, 4 28

2 6 9 4 18 36

2 6 12 3 3, 4, 6 66

2 6 12 4 30 66

2 7 14 4 7, 9, . . . , 18 91

2 8 8 5 4, . . . , 12, 16 28

2 9 6 6 6, 7, 8, 9 15

2 9 9 6 9, . . . , 18, 20 36

3 5 5 2 5 10

3 5 10 2 30 120

3 6 9 2 4, 6 84

3 6 10 3 60 120

3 6 12 2 8 220

3 6 12 3 106, 107, 108, 110, 112 220

3 6 14 3 166, 168, 171, 172 364

3 7 7 3 7, 9, . . . , 12, 14, 15 35

3 7 14 3 56, 60, . . . , 82, 84 364

3 8 8 4 24, . . . , 32 56

3 9 9 4 10, . . . , 33 84

3 10 5 4 4 10

3 10 6 5 10 20

4 8 8 3 30, . . . , 39 70

4 9 6 3 6, 7, 8, 9 15

218 integrality gap lower bounds

covering triplets.2 Our program also did not find an entanglement
in this asymmetric case. Even if this were possible, we would not
improve over 8/7 ≈ 1.143: One would have to select 1/3 on the edges
from the Steiner vertices to the root in the relaxation (instead of 1/4
for Skutella’s instance) because the second instance has s = 3. Hence,
the gap would be (14 + 4)/(14 + 7/3) = 54/49 ≈ 1.102.

Likewise, there is an instance with n = 7, m = 7, s = 4 that has 7
covering and 14 noncovering pairs, and an instance with n = 7, m = 7,
s = 5 that has 14 covering and 7 noncovering pairs. As there already
is an instance for n = 7, m = 7, s = 4 where selecting three sets is
necessary, the entangled instance would have a smaller gap. We did
not check whether entanglement is possible here.

There are also instances for n = 9, m = 9, s = 4 with covering triplet
numbers {10, . . . , 33} and for n = 9, m = 9, s = 5 with covering triplet
numbers {48, . . . , 60}. The total number of triplets is 84, so candidates
for entanglement would be the pairs of covering numbers

(10, 48), . . . , (10, 60),
...

(24, 48), . . . , (24, 60),
(25, 48), . . . , (25, 59),

...
(33, 48), . . . , (33, 51).

We did not check whether this is possible (which would be time-
demanding) because one would have to select 1/4 on the edges to
the root in the relaxation. The gap would be (18 + 4)/(18 + 9/4) =
88/81 ≈ 1.086, which is worse than the gap of the instance with
parameters n = 9, m = 9, s = 5.

Judging from the findings of this section, and perhaps the notoriety
of the Fano plane in combinatorics, it seems plausible that Skutella’s in-
stance has the maximum gap among all uniform unweighted set cover
instances.3 For larger instances, the gap will most likely approach
one, simply because of the growing numbers in the numerator and
the denominator. However, Table 18.2 shows that there exist instances
with n ∈ {11, 13} that have quite large gaps. Further experiments
should be made for moderate n, although they pose an enormous
computational effort.

To sum up, although we were unable to improve the gap lower
bound, our technique gives an insight why some set cover instances

2 In fact, here the sets are the points that do lie on the lines of the Fano plane. Other
possible covering numbers for n = 7, m = 7, s = 3 are 9, 10, 11, 12, 14, 15. However,
for n = 7,m = 7,s = 4, the covering triplet numbers are {28, 29, 30}. Of these, there
are no covering pairs only for 28.

3 We note that no instance exists with parameters n = 8, m = 8, s = 5 where three
sets must be selected, which one may have deemed possible. The hypothetical gap is
1.14583, just slightly exceeding 8/7.

18.3 entanglement 219

have a large gap: they consist of two entangled smaller set cover
instances.

18.3.1 Implementation

A few remarks on our implementation are in order. Since there may
be several nonisomorphic instances with the same parameters, we had
to rely on brute-force enumeration even when some instance can be
created from known combinatorial designs.

It is easily possible to generate all possible m-selections of s-sets
with dynamic programming. However, storing them requires a lot
of memory, hence we generated the selections one-by-one and added
them to a pool of selections only when appropriate. Traversing all
possible selections was done using an implicit bitstring representation
due to Payne and Ives [PI79]. For n = 9, the runtime of our algorithm
is still significant. In this case, we fixed without loss of generality two
sets S1, S2 for different cardinalities |S1 ∩ S2| in order to reduce the
number of combinations.

The generated instances were checked for uniformity; non-uniform
instances were discarded.4 Then, the instances are grouped by their
numbers of covering pairs, triplets or quadruplets, depending on
the optimum number of sets needed to cover the instance. Only
instance pairs whose covering numbers C1, C2 fulfill the necessary
condition C1 ≤ (m

k)− C2 are of interest. For these covering numbers,
the instances in each group can be distinguished into isomorphism
classes, only one instance per class is used then. As isomorphism is
an equivalence relation, computing its equivalence classes is often,
while costly, computationally feasible. However, if entanglement is
possible and the majority of instances allow it, it may be preferable
not to compute isomorphism classes because we will likely stumble
upon two instances that can be entangled. Hence, one should test
for entanglement both with and without isomorphism reduction. We
note that the number of isomorphism classes is typically very small,
usually below ten.

Note that if two distinct covering numbers align, their number of
instances may differ greatly. For example, for parameters n = 9,
m = 9, s = 6, there are 1,655,640 instances with covering number 16
(for pairs), but only 1,512 instances with covering number 20.

An isomorphism reduction on 1,512 instances is easily possible and
reduces the time of the pairwise check with the 1,655,640 other in-
stances: Here, there is only one isomorphism class, hence the speedup
is 1,512. However, isomorphism reduction on 1,655,640 instances is

4 Suppose we consider covering triplets. It may seem that we can discard instances
that have covering pairs right away. However, this is dangerous, for it could be the
case that the covering pair in one instance is not just a noncovering pair in the other,
but also that it cannot be extended to a covering triplet in the other.

220 integrality gap lower bounds

very costly and not worth the extra computation if the number of
instances to check each of them against is small, as is the case for one
isomorphism class. On the other hand, the class for covering number
16 is also checked against other classes, so it is difficult to estimate
how to use isomorphism reduction for the best speedup.

19
F U RT H E R VA R I A N T S O F T H E S T E I N E R T R E E
P R O B L E M

The wheel is come full circle[.]

— William Shakespeare, King Lear, Act 5, Scene 3 (1623)

19.1 the prize-collecting steiner tree problem

In the Steiner tree problem, the terminal vertices must be spanned by
the tree. In a well-known variant, a vertex has a profit (or prize), which
contributes to the objective value if a vertex is selected.

Definition 19.1.1 (Prize-Collecting Steiner Tree (PCST)). Given a sim-
ple graph G(V, E) with nonnegative vertex profits and edge weights

p : V −→ R+
0

w : E −→ R+
0 ,

find a tree T = (VT, ET) in G that maximizes

w(T) = ∑
v∈VT

p(v)− ∑
e∈ET

w(e).

We will not discuss the problem by itself, but only use it for proving
NP-completeness in the following section. That PCST is NP-complete
follows from a simple reduction from the Steiner tree problem by
choosing the vertex profits sufficiently large, modelling the terminals.
We list some interesting results.

PCST is a Lagrangean relaxation of the k-cardinality tree problem
[CRW04]. Bateni et al. [Bat+11] show that PCST can be solved in
polynomial time for graphs of bounded treewidth. Building upon this,
they show a PTAS for PCST on planar graphs.

19.2 the maximum weight connected subgraph problem

In contrast to the problems considered in earlier chapters, the follow-
ing problem only has vertex weights.

Definition 19.2.1. Given a graph (V, E, w) with weights w : V → R,
find a connected (induced) subgraph of G of maximum total weight.

The NP-completeness of MWCS was established by Karp in supple-
mentary material to Ideker et al. [Ide+02]. Dittrich et al. [Dit+08] give
reductions from PCST to MWCS and vice versa, which also establishes
the latter’s NP-completeness.

221

222 further variants of the steiner tree problem

Theorem 19.2.2 ([Ide+02],[Dit+08]). MWCS is NP-complete.

Proof. A given solution can be verified in polynomial time. For NP-
hardness we reduce from PCST. Let (V, E, w, p) denote the PCST
instance. We modify the graph as follows. For every edge (u, v) ∈ E,
we create an intermediate vertex x and replace (u, v) with (u, x) and
(x, v). The vertex x gets weight −w(u, v). The original vertices v ∈ V
retain their weights. It is easy to see that this indeed constitutes a
polynomial-time reduction.

As noted by El-Kebir and Klau [EK14], the reduction from PCST
to MWCS is approximation-preserving, and hence it is NP-hard to
approximate MWCS within a constant factor, as approximating PCST
within a constant factor is NP-hard [FPS01].

19.3 preprocessing rules for mwcs

We can process the connected components of the input graph inde-
pendently of each other and return the best result, hence we assume
connectivity in the following. If there is no vertex of positive weight,
then a single vertex is an optimal solution, namely one with maximum
weight. Hence, we now assume that there is a vertex of positive weight.
As we can test all single-vertex solutions in linear time, we can assume
that there is an optimal solution of at least two positive vertices.

We will use a merge operation for two adjacent vertices u, v that
replaces u and v with a vertex x of weight w(x) = w(u) + w(v),
which becomes the endpoint of the edges incident to u and v. If
there are edges (u, y), (v, y), only one edge (x, y) is the replacement.
The operation generalizes to a set of vertices that induce a connected
subgraph. The following rules are described in [AB14], and also partly
by El-Kebir and Klau [EK14]. They are applied exhaustively.

1. A vertex u with w(u) ≤ 0 can be removed if its degree is one.

2. If there is a path of vertices of degree two, all of which have
weight zero or less, we can merge these vertices. We may do so
because one such a vertex is only selected if there is a positively
weighted vertex that the path links to, so the whole path must
be selected.

3. If there is an edge (u, v) ∈ E with w(u) ≥ 0 and w(v) ≥ 0, then
the two vertices can be merged: If u is in an optimal solution,
we can select v without decreasing the objective.

4. If for a pair (u, v) ∈ (V
2) of vertices, not necessarily adjacent, we

have N(u) \ {v} ⊆ N(v), and w(u) ≤ 0 and w(u) ≤ w(v), then
u and all its incident edges can be removed. This is because if
G[S] is connected for some S ⊆ V with u ∈ S, then the graph

19.3 preprocessing rules for mwcs 223

G[(S \ {u}) ∪ {v}] is also connected. Thus there is an optimal
solution that does not contain u.

In order to implement rule 4. in O(|V|2∆(G)) time, sort all adjacency
lists in linear time in total (see the proof of Theorem 4.3.1). Then it
is straightforward to check for each pair (u, v) ∈ (V

2) of vertices if
N(u) \ {v} ⊆ N(v) in time O(∆) by advancing two pointers on the
sorted adjacency lists and comparing entries.

If rule 4. is to be implemented only for adjacent pairs, the runtime
can obviously be bounded by O(|E|∆(G)). We can improve this using
the following lemma.

Lemma 19.3.1 (Essentially [CN85]). In a simple graph G = (V, E), we
have

∑
uv∈E

min(deg(u), deg(v)) ≤ 2|E|p(G).

Proof. Consider partition of G into pseudoforests P1, . . . , Pp. Each
pseudoforest can be 1-oriented (see the proof of Theorem 8.2.4), i.e.,
each vertex is assigned at most one edge. Let vi(e) be the unique
vertex that e ∈ Pi points to. We have

∑
uv∈E

min(deg(u), deg(v)) ≤
p

∑
i=1

∑
e∈Pi

deg(vi(e))

≤
p

∑
i=1

∑
v∈V

deg(v)

= 2|E|p.

Chiba and Nishizeki used the lemma (stated in terms of forests and
Γ) to list the triangles of a graph in O(|E| Γ) time. Modifying their
algorithm slightly yields the following theorem.

Theorem 19.3.2 (Re-phrased from [CN85]). Rule 4. can be implemented
for adjacent vertices in O(|E|p(G)) time.

Proof. Let (u, v) ∈ E. Observe that if deg(u) > deg(v), then we have
N(u) \ {v} ⊈ N(v).

Sort the vertices by their degree in O(|V|) time by placing them into
|V| buckets for every possible degree in {0, . . . , |V| − 1}. Concatenat-
ing the buckets yields the desired sorted list. Create a Boolean array of
length |V|, initialized with ‘false’. This will be used as the row of the
adjacency matrix. Go through the list of vertices in descending order
of their degree. Let v be the current vertex. Mark all of v’s neighbors
in the array. Then, for every neighbor u of v with deg(u) ≤ deg(v),
check whether all of u’s neighbors except v are marked in the array.
If this is the case, then N(u) \ {v} ⊆ N(v). Once all neighbors u of
v have been tested, unmark them in the array, and proceed with the
next vertex in the sorted list.

224 further variants of the steiner tree problem

Table 19.1: Reduction of MWCS instances in the ACTMOD dataset used in
the 11th DIMACS Implementation Challenge.

Original instance After Preprocessing

Instance Vertices Edges Vertices Edges

drosophila001 5,226 93,394 2,514 41,825

drosophila005 5,226 93,394 2,486 40,234

drosophila0075 5,226 93,394 2,421 36,328

HCMV 3,863 29,293 974 4,000

lymphoma 2,034 7,756 1,316 6,503

metabol_expr_mice_1 3,523 4,345 1,331 1,858

metabol_expr_mice_2 3,514 4,332 1,293 1,803

metabol_expr_mice_3 2,853 3,335 846 1,178

The algorithm performs O(|E|) steps for marking and unmarking in
the array. For every pair (u, v) ∈ E, we perform min(deg(u), deg(v))
lookups in the array (if the degrees are equal, this actually happens
twice). By Lemma 19.3.1, this amounts to O(|E|p) in total.

The preprocessing rules 1.-4. were applied exhaustively to the ACT-
MOD dataset of the 11th DIMACS Implementation Challenge. The
results for the dataset are shown in Table 19.1. Using the neighborhood
reduction also for non-adjacent vertices yields better results than in
[AB14]. The latter, in turn, produced better results than the reduction
by El-Kebir and Klau [EK14] that only checks whether neighborhoods
are equal.

Recently, new reduction techniques (some being NP-hard to com-
pute) were introduced by Rehfeldt and Koch [RK19] and Rehfeldt et
al. [RKM19]. See also [RKM19] for reduction techniques for PCST.

19.4 algorithms for mwcs and its variants

The (M)ILP formulations of Chapters 14 and 16 can be easily adapted
for the MWCS problem. If we have edge weights and are interested in
the total weight of induced edges, we can model these with additional
variables x̃uv by adding additional constraints (see, e.g., [Alt+14]):

x̃uv ≤ yu, yv, uv ∈ E,

x̃uv ≥ yu + yv − 1, uv ∈ E.

Another variant was investigated by Backes et al. [Bac+11]. They
consider the problem of finding a connected subgraph of k vertices

19.4 algorithms for mwcs and its variants 225

in a directed graph that maximizes the total vertex weight. Here,
connected means there is a root node r in the subgraph such that there
is a path from r to every other vertex in the subgraph. If we drop the
k-cardinality requirement and consider an undirected graph, we have
the MWCS problem.

The special feature of the formulation by Backes et al. is that it
uses vertex-variables only: For every vertex, there is a binary variable
yv that determines whether v is selected, and a root variable rv that
determines whether v is the root. Let in(v) = {u ∈ V | (u, v) ∈ E}.
The constraints

yv − rv −∑
u∈in(v)

yu ≤ 0, v ∈ V, (19.1)

require every non-root vertex to have at least one predecessor. How-
ever, directed cycles not containing the root also satisfy (19.1), hence
the solution could contain several disconnected cycles. Therefore, the
constraints are extended. Let C ⊆ V be the set of vertices in a directed
cycle, and let in(C) =

⋃︁
v∈C in(v) \ C. The full ILP is

∑
v∈V

yv = k, (19.2)

∑
v∈V

rv = 1, (19.3)

yv − rv ≥ 0, v ∈ V, (19.4)

∑
v∈C

(yv − rv)−∑
v∈in(C)

yv ≤ |C| − 1, C ⊆ V : C cycle, (19.5)

yv ∈ {0, 1}, v ∈ V, (19.6)

rv ∈ {0, 1}, v ∈ V. (19.7)

Constraint (19.3) states that there is exactly one root vertex, and Con-
straint (19.4) ensures the root vertex must be selected. Constraint (19.5)
requires every vertex set of a cycle that does not contain the root vertex
to have at least one ingoing edge. This ensures these vertices can be
reached from the root as well. Álvarez-Miranda et al. [ÁLM13] show
that the LP relaxation of (19.1)-(19.7) is strictly weaker than the gener-
alized subtour elimination constraints. They also gave formulations
based on vertex variables only that are polyhedrally equivalent to
GSEC.

El-Kebir and Klau [EK14] use such a vertex-based ILP. In addition,
they divide the graph into smaller components. We give a rough
overview. The first layer is obvious: The connected components are
processed separately. The second layer is to compute the biconnected
components of the graph. Of course, the solution may involve vertices
that are in several adjacent biconnected components. Therefore, in ad-
dition to solving instances of MWCS in each biconnected component,
instances of a rooted variant of the MWCS problem are solved where
the cut vertices are chosen as the root that must be selected. Solutions

226 further variants of the steiner tree problem

of two adjacent biconnected components that are rooted in the same
cut vertex can be combined.

The third layer is to compute the triconnected components of the
biconnected components, and proceed in a similar fashion. We omit
the details.

20
C O N C L U S I O N A N D O U T L O O K

On two occasions, I have been asked [by members of Parliament],
“Pray, Mr. Babbage, if you put into the machine wrong figures,

will the right answers come out?”
I am not able to rightly apprehend the kind of confusion of ideas

that could provoke such a question.

— Charles Babbage, Passages from the Life of a Philosopher (1864)

20.1 problems solvable in polynomial time

In this thesis, we saw that the densest subgraph problem and the
related problems of smallest maximum indegree orientations (equiva-
lently, pseudoarboricity) and arboricity can be attacked with a mul-
titude of algorithmic techniques such as linear programming, flows,
matroid theory, and greedy algorithms. Based on these, it is possible
to devise both exact and approximative algorithms.

We were able to improve the runtime of an exact pseudoarboricity
algorithm by shrinking the search interval with Kowalik’s approxi-
mation scheme [Kow06] in Chapter 6. In fact, the pseudoarboricity
problem seems to hail from the best of all possible worlds: Not only
can the search interval be shrunk, it is in addition possible to use
the balanced binary search technique by Gabow and Westermann
[Wes88; GW92] on the interval. We are even able to repeatedly shrink
the search interval because the approximation scheme also uses a
binary search, which leads to a log∗ in the runtime bound under cer-
tain conditions. We wonder whether more problems exist that these
techniques can be applied to.

While we were not able to improve the runtime for the densest
subgraph problem asymptotically, our new runtime bounds for the
pseudoarboricity also hold for finding an ‘almost-densest subgraph’
of density greater ⌈d∗⌉ − 1 with Dinitz’s algorithm [Din70]. The algo-
rithms have the practical advantage that no complicated data struc-
tures are required and no intermediate steps have to be performed,
which is the case in the Goldberg–Rao flow algorithm [GR98]. In our
experiments in Chapter 12, Dinitz’s algorithm showed much better
performance than push-relabel algorithms and the solving of LPs with
the state-of-the-art solver Gurobi.

The pseudoarboricity has previously been used as a stepping stone
for the arboricity by Gabow and Westermann [Wes88; GW92]. We took
up this idea in Chapter 10 in order to devise a constructive approxi-
mation scheme for the arboricity by using Kowalik’s approximation

227

228 conclusion and outlook

scheme. Converting k pseudoforests into k + 1 forests is possible in
near-linear time for every fixed k using several data structures. In
Chapter 9, we showed how to achieve linear time for k = 3.

Whether our ideas can be developed further to find a faster exact
arboricity algorithm remains to be investigated: After computing an
optimal pseudoforest partition and converting it into p + 1 forests
with our conversion based on perfect hashing, how fast can forest Fp+1

be inserted into the other p forests, provided this is feasible? If this
step could be performed in time O(|E|3/2), then we would have an
exact (randomized) algorithm that is faster than Gabow’s [Gab98]. An
exact deterministic algorithm with a runtime of Õ(mΓ) could also be
within reach by computing a partition of p + 1 pseudoforests first.

Recently, Kopelowitz et al. [KPP16] showed that the triangle listing
algorithm of Chiba and Nishizeki with runtime Õ(mΓ) is essentially
time-optimal unless the 3SUM conjecture1 fails. Whether such a
conditional lower bound can be shown for the arboricity problem
should be investigated.

Another related question is whether the approximation scheme can
be made constructive for the densest subgraph problem as well. It
would be preferable to the approximation scheme by Toko Worou and
Galtier [TG16] because its dependence on ϵ is inversely linear, while
the latter’s dependence is inversely quadratic. Furthermore, Kowa-
lik’s approximation scheme is simple to implement and has excellent
practical performance, which can be seen from our experiments for
the exact re-orientation algorithm with Dinitz’s algorithm.

In addition to these results, we turned the tables and used the
arboricity as a stepping stone for the pseudoarboricity in Chapter 11

when it is asymptotically maximal. To this end, Gabow’s arboricity
algorithm [Gab98] was used to shrink the search interval to constant
size after a fast preprocessing that preserves the maximum density.
The preprocessing is of independent practical interest because it can
reduce the graph size considerably, which was also demonstrated by
our experiments in Chapter 12.

20.2 np-complete problems

We then investigated problems involving connected subgraphs that
are NP-complete. We proposed an ILP for spanning subtrees based on
the maximum density in Chapter 14. We showed that this formulation
is strictly weaker than the well-known generalized subtour elimination
constraints (GSEC) [Fis+94; Chi+10]. If an upper bound on the number
of vertices to select is specified, it becomes incomparable to the latter.
We showed that an MILP formulation of Althaus et al. [Alt+14], which
generalizes Cohen’s idea of using the smallest maximum fractional

1 Given a set A of n integers, are there three distinct elements (x, y, z) ∈ A3 such that
x + y = z? It is conjectured that this requires Ω(n2−o(1)) time.

20.2 np-complete problems 229

indegree, implies a subset of the constraints of the ILP. The intersection
of the polyhedra of the MILP and GSEC is in fact a subset of the
polyhedron of the ILP based on the maximum density.

The formulation of Althaus et al. only has a linear number of
constraints and can thus be easily integrated into ILPs whenever
connectivity is a requirement. In our experiments in Chapter 15,
Gurobi produced unexpectedly good results with this MILP on default
settings. Most instances could be solved to optimality within one hour,
significantly beating the GSEC ILP with the cutting-plane method and,
less significantly, the combination of the two programs. For a fair
comparison, we also ran the tests with Gurobi’s built-in strategies
deactivated. Here, the combined MILP was slightly better than either
of the two alone.

Our formulations are tightest when exactly k vertices are to be
selected. While they become less tight with growing k, it could
be possible that a 2(1 − 1/k)-approximation algorithm for the k-
cardinality problem exists; the currently best known factor is two
[Gar05]. Whether our formulations can be used to this end is an
interesting question for further research.

In the related Steiner tree problem, we tried to shed some light on
the idea behind the analysis of Byrka et al. [Byr+13] in Chapter 17.
We showed that there is a better witness tree distribution than the
one of Byrka et al. for every tree height. However, we also gave a
heuristic argument why both distributions should be asymptotically
optimal when the tree height approaches infinity. We also presented
a new witness tree distribution for claw-free instances that improves
the expected approximation factor from ln(4) ≈ 1.386 to roughly
1.354. Whether this is the optimal choice could not be ascertained. We
also showed an expected approximation factor of 1.25 for claw-free
instances with uniform weights. It would be interesting to try if the
techniques of Goemans et al. [Goe+12] can be applied to also obtain
these factors as upper bounds on the integrality gap of the bidirected
cut relaxation.

Finding good lower bounds to the integrality gap has proven dif-
ficult. Our new idea of entangling two instances derived from the
set cover problem (Chapter 18) did work in some cases, but no better
lower bound than the one achieved by Skutella’s instance [KPT11]
could be found. We also noted in Section 16.3 that the inapproxima-
bility result by Chlebík and Chlebíková [CC08] holds for claw-free
instances. One could try using different gadgets in the reduction that
contain Steiner claws in order to find a better lower bound for the
general case.

B I B L I O G R A P H Y

[Aar17] Scott Aaronson. “P ?
= NP”. In: Electronic Colloquium on

Computational Complexity (ECCC) 24 (2017), p. 4. url:
https://eccc.weizmann.ac.il/report/2017/004.

[Ach+16] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Ed-
ward Rothberg, and Dieter Weninger. Presolve Reductions
in Mixed Integer Programming. Tech. rep. 16-44. Zuse-
Institut Berlin, 2016.

[Ack28] Wilhelm Ackermann. “Zum Hilbertschen Aufbau der
reellen Zahlen”. In: Mathematische Annalen 99.1 (1928),
pp. 118–133. doi: 10.1007/BF01459088.

[AC04] A. Agarwal and M. Charikar. “On the advantage of
network coding for improving network throughput”.
In: Information Theory Workshop. 2004, pp. 247–249. doi:
10.1109/ITW.2004.1405308.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.
The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[AAR95] Oswin Aichholzer, Franz Aurenhammer, and Günter
Rote. Optimal Graph Orientation with Storage Applications.
Tech. rep. F003-51. SFB ‘Optimierung und Kontrolle’, TU
Graz, Austria, 1995. url: http://www.ist.tugraz.at/
files/publications/geometry/aar-ogosa-95.ps.gz.

[AT94] Martin Aigner and Eberhard Triesch. “Realizability and
uniqueness in graphs”. In: Discrete Mathematics 136.1
(1994), pp. 3–20. doi: 10.1016/0012-365X(94)00104-Q.

[AG08] Noga Alon and Shai Gutner. “Linear Time Algorithms
for Finding a Dominating Set of Fixed Size in Degen-
erated Graphs”. In: Algorithmica 54.4 (July 2008), p. 544.
doi: 10.1007/s00453-008-9204-0.

[Alt+91] Helmut Alt, Norbert Blum, Kurt Mehlhorn, and Markus
Paul. “Computing a maximum cardinality matching in
a bipartite graph in time O(n1.5

√︁
m/ log n)”. In: Infor-

mation Processing Letters 37.4 (1991), pp. 237–240. doi:
10.1016/0020-0190(91)90195-N.

[AB14] Ernst Althaus and Markus Blumenstock. “Algorithms
for the Maximum Weight Connected Subgraph and
Prize-collecting Steiner Tree Problems”. In: 11th DIMACS
Implementation Challenge on Steiner Tree Problems, Provi-
dence, Rhode Island, USA, December 4-5. 2014. eprint: http:

231

https://eccc.weizmann.ac.il/report/2017/004
https://doi.org/10.1007/BF01459088
https://doi.org/10.1109/ITW.2004.1405308
http://www.ist.tugraz.at/files/publications/geometry/aar-ogosa-95.ps.gz
http://www.ist.tugraz.at/files/publications/geometry/aar-ogosa-95.ps.gz
https://doi.org/10.1016/0012-365X(94)00104-Q
https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.1016/0020-0190(91)90195-N
http://dimacs11.zib.de/workshop/AlthausBlumenstock.pdf
http://dimacs11.zib.de/workshop/AlthausBlumenstock.pdf

232 bibliography

//dimacs11.zib.de/workshop/AlthausBlumenstock.

pdf.

[Alt+14] Ernst Althaus, Markus Blumenstock, Alexej Disterhoft,
Andreas Hildebrandt, and Markus Krupp. “Algorithms
for the Maximum Weight Connected k-Induced Sub-
graph Problem”. In: Combinatorial Optimization and Ap-
plications – 8th International Conference, COCOA 2014,
Wailea, Maui, HI, USA, December 19-21, 2014, Proceedings.
2014, pp. 268–282. doi: 10.1007/978- 3- 319- 12691-
3_21.

[ÁLM13] Eduardo Álvarez-Miranda, Ivana Ljubić, and Pe-
tra Mutzel. “The Maximum Weight Connected Sub-
graph Problem”. In: Facets of Combinatorial Optimization:
Festschrift for Martin Grötschel. Ed. by Michael Jünger
and Gerhard Reinelt. Springer Berlin Heidelberg, 2013,
pp. 245–270. doi: 10.1007/978-3-642-38189-8_11.

[AC09] Reid Andersen and Kumar Chellapilla. “Finding Dense
Subgraphs with Size Bounds”. In: Algorithms and Models
for the Web-Graph, 6th International Workshop, WAW 2009,
Barcelona, Spain, February 12-13, 2009. Proceedings. 2009,
pp. 25–37. doi: 10.1007/978-3-540-95995-3_3.

[Ang+14] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivas-
tava, Michael Svendsen, and Srikanta Tirthapura. “Dense
subgraph maintenance under streaming edge weight up-
dates for real-time story identification”. In: The VLDB
Journal 23.2 (2014), pp. 175–199. doi: 10.1007/s00778-
013-0340-z.

[AMZ97] Srinivasa Rao Arikati, Anil Maheshwari, and Christos
D. Zaroliagis. “Efficient computation of implicit repre-
sentations of sparse graphs”. In: Discrete Applied Math-
ematics 78.1-3 (1997), pp. 1–16. doi: 10 . 1016 / S0166 -

218X(97)00007-3.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity:
A Modern Approach. 1st ed. New York, NY, USA: Cam-
bridge University Press, 2009.

[AK06] Sanjeev Arora and George Karakostas. “A 2 + ϵ approx-
imation algorithm for the k-MST problem”. In: Mathe-
matical Programming 107.3 (2006), pp. 491–504. doi: 10.
1007/s10107-005-0693-1.

[AR98] Sunil Arya and H. Ramesh. “A 2.5-Factor Approxima-
tion Algorithm for the k-MST Problem”. In: Information
Processing Letters 65.3 (1998), pp. 117–118. doi: 10.1016/
S0020-0190(98)00010-6.

http://dimacs11.zib.de/workshop/AlthausBlumenstock.pdf
http://dimacs11.zib.de/workshop/AlthausBlumenstock.pdf
http://dimacs11.zib.de/workshop/AlthausBlumenstock.pdf
https://doi.org/10.1007/978-3-319-12691-3_21
https://doi.org/10.1007/978-3-319-12691-3_21
https://doi.org/10.1007/978-3-642-38189-8_11
https://doi.org/10.1007/978-3-540-95995-3_3
https://doi.org/10.1007/s00778-013-0340-z
https://doi.org/10.1007/s00778-013-0340-z
https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1007/s10107-005-0693-1
https://doi.org/10.1007/s10107-005-0693-1
https://doi.org/10.1016/S0020-0190(98)00010-6
https://doi.org/10.1016/S0020-0190(98)00010-6

bibliography 233

[Asa+00] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and
Takeshi Tokuyama. “Greedily Finding a Dense Sub-
graph”. In: Journal of Algorithms 34.2 (2000), pp. 203–221.
doi: 10.1006/jagm.1999.1062.

[Asa+07] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei
Zenmyo. “Graph Orientation Algorithms to Minimize
the Maximum Outdegree”. In: International Journal of
Foundations of Computer Science 18.02 (2007), pp. 197–215.
doi: 10.1142/S0129054107004644.

[Awe+95] Baruch Awerbuch, Yossi Azar, Avrim Blum, and San-
tosh Vempala. “Improved approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen”.
In: Proceedings of the Twenty-Seventh Annual ACM Sym-
posium on Theory of Computing, 29 May-1 June 1995, Las
Vegas, Nevada, USA. 1995, pp. 277–283. doi: 10.1145/
225058.225139.

[Bac+11] Christina Backes et al. “An integer linear programming
approach for finding deregulated subgraphs in regu-
latory networks”. In: Nucleic Acids Research (2011). doi:
10.1093/nar/gkr1227.

[BKV12] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvit-
skii. “Densest Subgraph in Streaming and MapReduce”.
In: The Proceedings of the VLDB Endowment 5.5 (2012),
pp. 454–465. doi: 10.14778/2140436.2140442.

[Băl+15] Oana Denisa Bălălău, Francesco Bonchi, T.-H. Hubert
Chan, Francesco Gullo, and Mauro Sozio. “Finding
Subgraphs with Maximum Total Density and Limited
Overlap”. In: Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM 2015,
Shanghai, China, February 2-6, 2015. 2015, pp. 379–388.
doi: 10.1145/2684822.2685298.

[Bal70] Michel L. Balinski. “On a Selection Problem”. In: Man-
agement Science 17.3 (1970), pp. 230–231. doi: 10.1287/
mnsc.17.3.230.

[Ban80] Lech Banachowski. “A complement to Tarjan’s result
about the lower bound on the complexity of the set
union problem”. In: Information Processing Letters 11.2
(1980), pp. 59–65. doi: 10.1016/0020-0190(80)90001-0.

[BU17] Nikhil Bansal and Seeun William Umboh. “Tight ap-
proximation bounds for dominating set on graphs of
bounded arboricity”. In: Information Processing Letters
122 (2017), pp. 21–24. doi: 10.1016/j.ipl.2017.01.011.

[Bap14] Ravindra B. Bapat. Graphs and Matrices. 2nd ed. Universi-
text. Springer, 2014. doi: 10.1007/978-1-4471-6569-9.

https://doi.org/10.1006/jagm.1999.1062
https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1145/225058.225139
https://doi.org/10.1145/225058.225139
https://doi.org/10.1093/nar/gkr1227
https://doi.org/10.14778/2140436.2140442
https://doi.org/10.1145/2684822.2685298
https://doi.org/10.1287/mnsc.17.3.230
https://doi.org/10.1287/mnsc.17.3.230
https://doi.org/10.1016/0020-0190(80)90001-0
https://doi.org/10.1016/j.ipl.2017.01.011
https://doi.org/10.1007/978-1-4471-6569-9

234 bibliography

[BA99] Albert-László Barabási and Réka Albert. “Emergence
of Scaling in Random Networks”. In: Science 286.5439

(1999), pp. 509–512. doi: 10.1126/science.286.5439.
509.

[BE10] Leonid Barenboim and Michael Elkin. “Sublogarithmic
distributed MIS algorithm for sparse graphs using Nash-
Williams decomposition”. In: Distributed Computing 22.5
(2010), pp. 363–379. doi: 10.1007/s00446-009-0088-2.

[Bat+11] MohammadHossein Bateni, Chandra Chekuri, Alina
Ene, Mohammad T. Hajiaghayi, Nitish Korula, and
Dániel Marx. “Prize-collecting Steiner Problems on Pla-
nar Graphs”. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011.
2011, pp. 1028–1049. doi: 10.1137/1.9781611973082.79.

[Bea90] John E. Beasley. “OR-Library: Distributing Test Prob-
lems by Electronic Mail”. In: The Journal of the Opera-
tional Research Society 41.11 (1990), pp. 1069–1072. doi:
10.2307/2582903.

[BKZ09] Piotr Berman, Marek Karpinski, and Alexander Ze-
likovsky. “1.25-Approximation Algorithm for Steiner
Tree Problem with Distances 1 and 2”. In: Algorithms and
Data Structures. Ed. by Frank Dehne, Marina Gavrilova,
Jörg-Rüdiger Sack, and Csaba D. Tóth. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 86–97.

[BP89] Marshall Bern and Paul Plassmann. “The Steiner prob-
lem with edge lengths 1 and 2”. In: Information Process-
ing Letters 32.4 (1989), pp. 171–176. doi: 10.1016/0020-
0190(89)90039-2.

[BMS81] Alberto Bertoni, Giancarlo Mauri, and Nicoletta Saba-
dini. “A Characterization of the Class of Functions Com-
putable in Polynomial Time on Random Access Ma-
chines”. In: Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing. Milwaukee, Wiscon-
sin, USA: ACM, 1981, pp. 168–176. doi: 10.1145/800076.
802470.

[BT97] Dimitris Bertsimas and John Tsitsiklis. Introduction to
Linear Optimization. 1st ed. Athena Scientific, 1997.

[BC14] Stephan Beyer and Markus Chimani. “Steiner Tree 1.39-
Approximation in Practice”. In: Mathematical and Engi-
neering Methods in Computer Science. Ed. by Petr Hliněný,
Zdeněk Dvořák, Jiří Jaroš, Jan Kofroň, Jan Kořenek, Petr
Matula, and Karel Pala. Cham: Springer International

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1137/1.9781611973082.79
https://doi.org/10.2307/2582903
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1145/800076.802470
https://doi.org/10.1145/800076.802470

bibliography 235

Publishing, 2014, pp. 60–72. doi: 10.1007/978-3-319-
14896-0_6.

[Bez00] Ivona Bezáková. “Compact Representations of Graphs
and Adjacency Testing”.
http://people.cs.uchicago.edu/~ivona/PAPERS/

GraphRepr.ps. MA thesis. Slovakia: Comenius Univer-
sity, Bratislava, 2000.

[Bha+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtáč, Uriel
Feige, and Aravindan Vijayaraghavan. “Detecting High
Log-Densities – an O(n1/4) Approximation for Dens-
est k-Subgraph”. In: Proceedings of the 42nd ACM Sym-
posium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010. 2010, pp. 201–210. doi:
10.1145/1806689.1806719.

[Bha+15a] Sayan Bhattacharya, Monika Henzinger, Danupon
Nanongkai, and Charalampos Tsourakakis. “Space- and
Time-Efficient Algorithm for Maintaining Dense Sub-
graphs on One-Pass Dynamic Streams”. In: Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015. Portland, Oregon, USA: ACM, 2015, pp. 173–182.
doi: 10.1145/2746539.2746592.

[Bha+15b] Sayan Bhattacharya, Monika Henzinger, Danupon
Nanongkai, and Charalampos E. Tsourakakis. “Space-
and Time-Efficient Algorithm for Maintaining Dense
Subgraphs on One-Pass Dynamic Streams”. In: CoRR
abs/1504.02268 (2015). arXiv: 1504.02268.

[Bie+04] Therese Biedl, Erik D. Demaine, Christian A. Duncan,
Rudolf Fleischer, and Stephen G. Kobourov. “Tight
bounds on maximal and maximum matchings”. In: Dis-
crete Mathematics 285.1 (2004), pp. 7–15. doi: 10.1016/j.
disc.2004.05.003.

[BX00] Maria J. Blesa and Fatos Xhafa. “A C++ implemen-
tation of tabu search for k-cardinality tree problem
based on generic programming and component reuse”.
In: Net.ObjectDays 2000 Tagungsband. Net.ObjectDays-
Forum. Erfurt, Germany, 2000, pp. 648–652.

[BRV96] Avrim Blum, R. Ravi, and Santosh Vempala. “A Constant-
factor Approximation Algorithm for the k-MST Prob-
lem”. In: Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Penn-
sylvania, USA, May 22-24, 1996. Ed. by Gary L. Miller.
ACM, 1996, pp. 442–448. doi: 10.1145/237814.237992.

https://doi.org/10.1007/978-3-319-14896-0_6
https://doi.org/10.1007/978-3-319-14896-0_6
http://people.cs.uchicago.edu/~ivona/PAPERS/GraphRepr.ps
http://people.cs.uchicago.edu/~ivona/PAPERS/GraphRepr.ps
https://doi.org/10.1145/1806689.1806719
https://doi.org/10.1145/2746539.2746592
https://arxiv.org/abs/1504.02268
https://doi.org/10.1016/j.disc.2004.05.003
https://doi.org/10.1016/j.disc.2004.05.003
https://doi.org/10.1145/237814.237992

236 bibliography

[BRV99] Avrim Blum, R. Ravi, and Santosh Vempala. “A Constant-
Factor Approximation Algorithm for the k-MST Prob-
lem”. In: Journal of Computer and System Sciences 58.1
(1999), pp. 101–108. doi: 10.1006/jcss.1997.1542.

[BB05] Christian Blum and Maria J. Blesa. “New metaheuristic
approaches for the edge-weighted k-cardinality tree prob-
lem”. In: Computers & Operations Research 32.6 (2005),
pp. 1355–1377. doi: 10.1016/j.cor.2003.11.007.

[Blu16] Markus Blumenstock. “Fast Algorithms for Pseudoar-
boricity”. In: Proceedings of the Eighteenth Workshop on Al-
gorithm Engineering and Experiments, ALENEX 2016, Ar-
lington, Virginia, USA, January 10, 2016. 2016, pp. 113–
126. doi: 10.1137/1.9781611974317.10.

[BD97] Al Borchers and Ding-Zhu Du. “The k-Steiner Ratio
in Graphs”. In: SIAM Journal on Computing 26.3 (1997),
pp. 857–869. doi: 10.1137/S0097539795281086.

[Bor+17] Glencora Borradaile, Jennifer Iglesias, Theresa Migler,
Antonio Ochoa, Gordon Wilfong, and Lisa Zhang. “Egal-
itarian Graph Orientations”. In: Journal of Graph Algo-
rithms and Applications 21.4 (2017), pp. 687–708. doi: 10.
7155/jgaa.00435.

[BKK07] Glencora Borradaile, Claire Kenyon-Mathieu, and Philip
N. Klein. “A polynomial-time approximation scheme
for Steiner tree in planar graphs”. In: Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2007, New Orleans, Louisiana, USA, Jan-
uary 7-9, 2007. 2007, pp. 1285–1294. url: http://dl.acm.
org/citation.cfm?id=1283383.1283521.

[Bor26] Otakar Borůvka. “O jistém problému minimálním
[On a certain minimal problem, in Czech]”. In:
Práce Moravské přírodovědecká společnost. Práce Moravské
přírodovědecké společnosti 3.3 (1926), pp. 37–58.

[Bra+14] Marcus Brazil, Ronald L. Graham, Doreen A. Thomas,
and Martin Zachariasen. “On the history of the Eu-
clidean Steiner tree problem”. In: Archive for History of
Exact Sciences 68.3 (2014), pp. 327–354. doi: 10.1007/
s00407-013-0127-z.

[BF99] Gerth S. Brodal and Rolf Fagerberg. “Dynamic Repre-
sentation of Sparse Graphs”. In: Proceedings of the 6th
International Workshop on Algorithms and Data Structures.
WADS ’99. London, UK: Springer-Verlag, 1999, pp. 342–
351. url: http://dl.acm.org/citation.cfm?id=645932.
673191.

https://doi.org/10.1006/jcss.1997.1542
https://doi.org/10.1016/j.cor.2003.11.007
https://doi.org/10.1137/1.9781611974317.10
https://doi.org/10.1137/S0097539795281086
https://doi.org/10.7155/jgaa.00435
https://doi.org/10.7155/jgaa.00435
http://dl.acm.org/citation.cfm?id=1283383.1283521
http://dl.acm.org/citation.cfm?id=1283383.1283521
https://doi.org/10.1007/s00407-013-0127-z
https://doi.org/10.1007/s00407-013-0127-z
http://dl.acm.org/citation.cfm?id=645932.673191
http://dl.acm.org/citation.cfm?id=645932.673191

bibliography 237

[BLT12] Gerth S. Brodal, George Lagogiannis, and Robert E.
Tarjan. “Strict Fibonacci heaps”. In: Proceedings of the
44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012. 2012,
pp. 1177–1184. doi: 10.1145/2213977.2214082.

[BS04] Thang Nguyen Bui and Gnanasekaran Sundarraj. “Ant
System for the k-Cardinality Tree Problem”. In: Genetic
and Evolutionary Computation - GECCO 2004, Genetic and
Evolutionary Computation Conference, Seattle, WA, USA,
June 26-30, 2004, Proceedings, Part I. Ed. by Kalyanmoy
Deb et al. Vol. 3102. Lecture Notes in Computer Science.
Springer, 2004, pp. 36–47. doi: 10.1007/978- 3- 540-
24854-5_4.

[Byr+10] Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß,
and Laura Sanità. “An Improved LP-based Approxi-
mation for Steiner Tree”. In: Proceedings of the Forty-
second ACM Symposium on Theory of Computing. Cam-
bridge, Massachusetts, USA: ACM, 2010, pp. 583–592.
doi: 10.1145/1806689.1806769.

[Byr+13] Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß,
and Laura Sanità. “Steiner Tree Approximation via Itera-
tive Randomized Rounding”. In: Journal of the ACM 60.1
(2013), 6:1–6:33. doi: 10.1145/2432622.2432628.

[Cat+92] Paul A. Catlin, Jerrold W. Grossman, Arthur M. Hobbs,
and Hong-Jian Lai. “Fractional Arboricity, Strength, and
Principal Partitions in Graphs and Matroids”. In: Discrete
Applied Mathematics 40.3 (1992), pp. 285–302. doi: 10.
1016/0166-218X(92)90002-R.

[CKP10a] Deeparnab Chakrabarty, Jochen Könemann, and David
Pritchard. “Hypergraphic LP Relaxations for Steiner
Trees”. In: Integer Programming and Combinatorial Opti-
mization: 14th International Conference, IPCO 2010, Lau-
sanne, Switzerland, June 9-11, 2010. Proceedings. Ed. by
Friedrich Eisenbrand and F. Bruce Shepherd. Springer
Berlin Heidelberg, 2010, pp. 383–396. doi: 10.1007/978-
3-642-13036-6_29.

[CKP10b] Deeparnab Chakrabarty, Jochen Könemann, and David
Pritchard. “Integrality gap of the hypergraphic relaxation
of Steiner trees: A short proof of a 1.55 upper bound”. In:
Operations Research Letters 38.6 (2010), pp. 567–570. doi:
10.1016/j.orl.2010.09.004.

[Cha00a] Moses Charikar. “Greedy Approximation Algorithms
for Finding Dense Components in a Graph”. In: Pro-
ceedings of the Third International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization. APPROX

https://doi.org/10.1145/2213977.2214082
https://doi.org/10.1007/978-3-540-24854-5_4
https://doi.org/10.1007/978-3-540-24854-5_4
https://doi.org/10.1145/1806689.1806769
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1016/0166-218X(92)90002-R
https://doi.org/10.1016/0166-218X(92)90002-R
https://doi.org/10.1007/978-3-642-13036-6_29
https://doi.org/10.1007/978-3-642-13036-6_29
https://doi.org/10.1016/j.orl.2010.09.004

238 bibliography

’00. London, UK: Springer-Verlag, 2000, pp. 84–95. url:
http://dl.acm.org/citation.cfm?id=646688.702972.

[Cha00b] Bernard Chazelle. “A Minimum Spanning Tree Algo-
rithm with inverse-Ackermann Type Complexity”. In:
Journal of the ACM 47.6 (2000), pp. 1028–1047. doi: 10.
1145/355541.355562.

[Che+94] Boliong Chen, Makoto Matsumoto, Jianfang Wang,
Zhongfu Zhang, and Jianxun Zhang. “A short proof
of Nash-Williams’ theorem for the arboricity of a graph”.
In: Graphs and Combinatorics 10.1 (1994), pp. 27–28.

[Che+17] Min Chen, Seog-Jin Kim, Alexandr V. Kostochka, Dou-
glas B. West, and Xuding Zhu. “Decomposition of sparse
graphs into forests: The Nine Dragon Tree Conjecture for
k ≤ 2”. In: Journal of Combinatorial Theory, Series B 122

(2017), pp. 741–756. doi: 10.1016/j.jctb.2016.09.004.

[CZZ19] Xujin Chen, Wenan Zang, and Qiulan Zhao. “Densities,
Matchings, and Fractional Edge-Colorings”. In: SIAM
Journal on Optimization 29.1 (2019), pp. 240–261. doi: 10.
1137/17M1147676.

[Che95] Y. L. Chen. “A parametric maximum flow algorithm for
bipartite graphs with applications”. In: European Journal
of Operational Research 80.1 (1995), pp. 226–235. doi: 10.
1016/0377-2217(93)E0161-P.

[CM88] J. Cheriyan and S. N. Maheshwari. “Analysis of preflow
push algorithms for maximum network flow”. English.
In: Foundations of Software Technology and Theoretical Com-
puter Science. Ed. by Kesav V. Nori and Sanjeev Kumar.
Vol. 338. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1988, pp. 30–48. doi: 10.1007/3-540-
50517-2_69.

[CHM96] Joseph Cheriyan, Torben Hagerup, and Kurt Mehlhorn.
“An o(n3)-Time Maximum-Flow Algorithm”. In: SIAM
Journal on Computing 25.6 (1996), pp. 1144–1170. doi: 10.
1137/S0097539791278376.

[CG97] Boris V. Cherkassky and Andrew V. Goldberg. “On Im-
plementing the Push-Relabel Method for the Maximum
Flow Problem”. In: Algorithmica 19.4 (1997), pp. 390–410.
doi: 10.1007/PL00009180.

[CN85] Norishige Chiba and Takao Nishizeki. “Arboricity and
Subgraph Listing Algorithms”. In: SIAM Journal on Com-
puting 14.1 (1985), pp. 210–223. doi: 10.1137/0214017.

http://dl.acm.org/citation.cfm?id=646688.702972
https://doi.org/10.1145/355541.355562
https://doi.org/10.1145/355541.355562
https://doi.org/10.1016/j.jctb.2016.09.004
https://doi.org/10.1137/17M1147676
https://doi.org/10.1137/17M1147676
https://doi.org/10.1016/0377-2217(93)E0161-P
https://doi.org/10.1016/0377-2217(93)E0161-P
https://doi.org/10.1007/3-540-50517-2_69
https://doi.org/10.1007/3-540-50517-2_69
https://doi.org/10.1137/S0097539791278376
https://doi.org/10.1137/S0097539791278376
https://doi.org/10.1007/PL00009180
https://doi.org/10.1137/0214017

bibliography 239

[Chi+10] Markus Chimani, Maria Kandyba, Ivana Ljubić, and
Petra Mutzel. “Obtaining Optimal k-Cardinality Trees
Fast”. In: Journal of Experimental Algorithmics 14 (2010),
5:2.5–5:2.23. doi: 10.1145/1498698.1537600.

[CKM07] Markus Chimani, Maria Kandyba, and Petra Mutzel.
“A New ILP Formulation for 2-Root-Connected Prize-
Collecting Steiner Networks”. In: Algorithms - ESA 2007,
15th Annual European Symposium, Eilat, Israel, October 8-
10, 2007, Proceedings. Ed. by Lars Arge, Michael Hoff-
mann, and Emo Welzl. Vol. 4698. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 681–692. doi: 10.1007/
978-3-540-75520-3_60.

[CMZ12] Markus Chimani, Petra Mutzel, and Bernd Zey. “Im-
proved Steiner tree algorithms for bounded treewidth”.
In: Journal of Discrete Algorithms 16 (2012). Selected pa-
pers from the 22nd International Workshop on Com-
binatorial Algorithms (IWOCA 2011), pp. 67–78. doi:
10.1016/j.jda.2012.04.016.

[CC08] Miroslav Chlebík and Janka Chlebíková. “The Steiner
tree problem on graphs: Inapproximability results”. In:
Theoretical Computer Science 406.3 (2008). Algorithmic As-
pects of Global Computing, pp. 207–214. doi: 10.1016/
j.tcs.2008.06.046.

[CR94] Sunil Chopra and Mendu R. Rao. “The Steiner tree
problem I: Formulations, compositions and extension
of facets”. In: Mathematical Programming 64.1 (1994),
pp. 209–229. doi: 10.1007/BF01582573.

[CE91] Marek Chrobak and David Eppstein. “Planar orienta-
tions with low out-degree and compaction of adjacency
matrices”. In: Theoretical Computer Science 86.2 (1991),
pp. 243–266. doi: 10.1016/0304-3975(91)90020-3.

[CRW04] Fabián A. Chudak, Tim Roughgarden, and David P.
Williamson. “Approximate k-MSTs and k-Steiner trees
via the primal-dual method and Lagrangean relaxation”.
In: Mathematical Programming 100.2 (2004), pp. 411–421.
doi: 10.1007/s10107-003-0479-2.

[Cob65] Alan Cobham. “The Intrinsic Computational Difficulty of
Functions”. In: Logic, Methodology and Philosophy of Sci-
ence: Proceedings of the 1964 International Congress (Stud-
ies in Logic and the Foundations of Mathematics). Ed. by
Yehoshua Bar-Hillel. North-Holland Publishing, 1965,
pp. 24–30.

https://doi.org/10.1145/1498698.1537600
https://doi.org/10.1007/978-3-540-75520-3_60
https://doi.org/10.1007/978-3-540-75520-3_60
https://doi.org/10.1016/j.jda.2012.04.016
https://doi.org/10.1016/j.tcs.2008.06.046
https://doi.org/10.1016/j.tcs.2008.06.046
https://doi.org/10.1007/BF01582573
https://doi.org/10.1016/0304-3975(91)90020-3
https://doi.org/10.1007/s10107-003-0479-2

240 bibliography

[Coh10] Nathann Cohen. Several Graph problems and their Linear
Program formulations. French Institute for Research in
Computer Science and Automation (INRIA). 2010. url:
https://hal.inria.fr/inria-00504914.

[CD06] Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of
Combinatorial Designs, Second Edition. Discrete Mathemat-
ics and Its Applications. Chapman & Hall/CRC, 2006.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-proving
Procedures”. In: Proceedings of the Third Annual ACM
Symposium on Theory of Computing. Shaker Heights, Ohio,
USA: ACM, 1971, pp. 151–158. doi: 10.1145/800157.
805047.

[CR73] Stephen A. Cook and Robert A. Reckhow. “Time
Bounded Random Access Machines”. In: Journal of Com-
puter and System Sciences 7.4 (1973), pp. 354–375. doi:
10.1016/S0022-0000(73)80029-7.

[Cor+01] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms. 2nd.
McGraw-Hill Higher Education, 2001.

[CGW91] Collette R. Coullard, John G. del Greco, and Donald
K. Wagner. “Representations of bicircular matroids”. In:
Discrete Applied Mathematics 32.3 (1991), pp. 223–240. doi:
10.1016/0166-218X(91)90001-D.

[Dan49] George B. Dantzig. “Programming of Interdependent Ac-
tivities: II Mathematical Model”. In: Econometrica 17.3/4

(1949), pp. 200–211. doi: 10.2307/1905523.

[Dan51] George B. Dantzig. “Maximization of a Linear Function
of Variables Subject to Linear Inequalities, in Activity
Analysis of Production and Allocation”. In: New York:
Wiley, 1951. Chap. XXI.

[Dan63] George B. Dantzig. Linear programming and extensions.
Rand Corporation Research Study. Princeton, NJ: Prince-
ton Univ. Press, 1963. XVI, 625.

[DFJ54] George B. Dantzig, Delbert R. Fulkerson, and Selmer M.
Johnson. “Solution of a Large-Scale Traveling-Salesman
Problem”. In: Operations Research 2.4 (1954), pp. 393–410.
doi: 10.1287/opre.2.4.393.

[Das+12] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai,
and Amitabh Trehan. “Dense Subgraphs on Dynamic
Networks”. In: Distributed Computing. Ed. by Marcos K.
Aguilera. Springer Berlin Heidelberg, 2012, pp. 151–165.

https://hal.inria.fr/inria-00504914
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/S0022-0000(73)80029-7
https://doi.org/10.1016/0166-218X(91)90001-D
https://doi.org/10.2307/1905523
https://doi.org/10.1287/opre.2.4.393

bibliography 241

[DHS91] Alice M. Dean, Joan P. Hutchinson, and Edward R.
Scheinerman. “On the Thickness and Arboricity of a
Graph”. In: Journal of Combinatorial Theory, Series B 52.1
(1991), pp. 147–151. doi: 10.1016/0095-8956(91)90100-
X.

[Din70] E. A. Dinic. “Algorithm for Solution of a Problem of
Maximum Flow in a Network with Power Estimation”.
In: Soviet Mathematics Doklady 11 (1970), pp. 1277–1280.

[Din06] Yefim Dinitz. “Dinitz’ Algorithm: The Original Version
and Even’s Version”. In: Theoretical Computer Science: Es-
says in Memory of Shimon Even. Ed. by Oded Goldreich,
Arnold L. Rosenberg, and Alan L. Selman. Springer
Berlin Heidelberg, 2006, pp. 218–240. doi: 10 . 1007 /

11685654_10.

[Din+08] Irina Dinu, John D. Potter, Thomas Mueller, Qi Liu,
Adeniyi J. Adewale, Gian S. Jhangri, Gunilla Einecke,
Konrad S. Famulski, Philip Halloran, and Yutaka Ya-
sui. “Gene-set analysis and reduction”. In: Briefings in
Bioinformatics 10.1 (2008), pp. 24–34. doi: 10.1093/bib/
bbn042.

[DS13] Irit Dinur and David Steurer. “Analytical Approach
to Parallel Repetition”. In: CoRR abs/1305.1979 (2013).
arXiv: 1305.1979.

[DS14] Irit Dinur and David Steurer. “Analytical Approach to
Parallel Repetition”. In: Proceedings of the Forty-sixth An-
nual ACM Symposium on Theory of Computing. New York,
NY: ACM, 2014, pp. 624–633. doi: 10.1145/2591796.
2591884.

[Dit+08] Marcus T. Dittrich, Gunnar W. Klau, Andreas Rosenwald,
Thomas Dandekar, and Tobias Müller. “Identifying func-
tional modules in protein-protein interaction networks:
an integrated exact approach”. In: Bioinformatics 24.13

(2008), pp. i223–i231. doi: 10.1093/bioinformatics/
btn161.

[Don+18] Riccardo Dondi, Mohammad M. Hosseinzadeh, Gian-
carlo Mauri, and Italo Zoppis. “Top-k Overlapping Dens-
est Subgraphs: Approximation and Complexity”. In:
CoRR abs/1809.02434 (2018). arXiv: 1809.02434.

[DGP09] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini.
“Extraction and Classification of Dense Implicit Commu-
nities in the Web Graph”. In: ACM Transactions on the
Web 3.2 (2009), 7:1–7:36. doi: 10.1145/1513876.1513879.

https://doi.org/10.1016/0095-8956(91)90100-X
https://doi.org/10.1016/0095-8956(91)90100-X
https://doi.org/10.1007/11685654_10
https://doi.org/10.1007/11685654_10
https://doi.org/10.1093/bib/bbn042
https://doi.org/10.1093/bib/bbn042
https://arxiv.org/abs/1305.1979
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1093/bioinformatics/btn161
https://doi.org/10.1093/bioinformatics/btn161
https://arxiv.org/abs/1809.02434
https://doi.org/10.1145/1513876.1513879

242 bibliography

[DW71] Stuart E. Dreyfus and Robert A. Wagner. “The Steiner
problem in graphs”. In: Networks 1.3 (1971), pp. 195–207.
doi: 10.1002/net.3230010302.

[DP14] Ran Duan and Seth Pettie. “Linear-Time Approximation
for Maximum Weight Matching”. In: Journal of the ACM
61.1 (2014), 1:1–1:23. doi: 10.1145/2529989.

[DEK04] Christian A. Duncan, David Eppstein, and Stephen G.
Kobourov. “The Geometric Thickness of Low Degree
Graphs”. In: Proceedings of the Twentieth Annual Sym-
posium on Computational Geometry. SCG ’04. Brooklyn,
New York, USA: ACM, 2004, pp. 340–346. doi: 10.1145/
997817.997868.

[Edm65] Jack Edmonds. “Minimum Partition of a Matroid Into In-
dependent Subsets”. In: Journal of Research of the National
Bureau of Standards, B 69 (1965), pp. 67–72.

[Edm67] Jack Edmonds. “Optimum branchings”. In: Journal of
Research of the National Bureau of Standards, B 71 (1967),
pp. 233–240.

[EK72] Jack Edmonds and Richard M. Karp. “Theoretical Im-
provements in Algorithmic Efficiency for Network Flow
Problems”. In: Journal of the ACM 19.2 (1972), pp. 248–
264. doi: 10.1145/321694.321699.

[Ehr+97] Matthias Ehrgott, Jörg Freitag, Horst W. Hamacher, and
Francesco Maffioli. “Heuristics for the K-Cardinality Tree
and Subgraph Problems”. In: Asia-Pacific Journal of Op-
erational Research 14.1 (1997), pp. 87–114.

[EK14] Mohammed El-Kebir and Gunnar W. Klau. “Solving
the Maximum-Weight Connected Subgraph Problem to
Optimality”. In: CoRR abs/1409.5308 (2014). arXiv: 1409.
5308.

[EFS56] Peter Elias, Amiel Feinstein, and Claude E. Shannon. “A
note on the maximum flow through a network”. In: IRE
Transactions on Information Theory 2.4 (1956), pp. 117–119.
doi: 10.1109/TIT.1956.1056816.

[ELS15] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio.
“Efficient Densest Subgraph Computation in Evolving
Graphs”. In: Proceedings of the 24th International Confer-
ence on World Wide Web, WWW 2015, Florence, Italy, May
18-22, 2015. 2015, pp. 300–310. doi: 10.1145/2736277.
2741638.

[Epp94] David Eppstein. “Arboricity and Bipartite Subgraph List-
ing Algorithms”. In: Information Processing Letters 51.4
(1994), pp. 207–211. doi: 10.1016/0020-0190(94)90121-
X.

https://doi.org/10.1002/net.3230010302
https://doi.org/10.1145/2529989
https://doi.org/10.1145/997817.997868
https://doi.org/10.1145/997817.997868
https://doi.org/10.1145/321694.321699
https://arxiv.org/abs/1409.5308
https://arxiv.org/abs/1409.5308
https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.1145/2736277.2741638
https://doi.org/10.1145/2736277.2741638
https://doi.org/10.1016/0020-0190(94)90121-X
https://doi.org/10.1016/0020-0190(94)90121-X

bibliography 243

[ELS13] David Eppstein, Maarten Löffler, and Darren Strash.
“Listing All Maximal Cliques in Large Sparse Real-World
Graphs”. In: ACM Journal of Experimental Algorithmics 18

(2013). doi: 10.1145/2543629.

[Eul36] Leonhard Euler. “Solutio problematis ad geometriam
situs pertinentis [The solution of a problem relating to
the geometry of position, in Latin]”. In: Commentarii
Academiae Scientiarum Imperialis Petropolitanae 8 (1736),
pp. 128–140.

[Eve11] Shimon Even. Graph Algorithms. 2nd ed. New York, NY,
USA: Cambridge University Press, 2011.

[ET75] Shimon Even and Robert E. Tarjan. “Network Flow and
Testing Graph Connectivity”. In: SIAM Journal on Com-
puting 4.4 (1975), pp. 507–518. doi: 10.1137/0204043.

[Fan+15] Genghua Fan, Yan Li, Ning Song, and Daqing Yang. “De-
composing a graph into pseudoforests with one having
bounded degree”. In: Journal of Combinatorial Theory, Se-
ries B 115 (2015), pp. 72–95. doi: 10.1016/j.jctb.2015.
05.003.

[Far02] Julius Farkas. “Theorie der einfachen Ungleichungen
[Theory of simple inequalities, in German]”. In: Journal
für die reine und angewandte Mathematik 124 (1902), pp. 1–
27. url: http://eudml.org/doc/149129.

[FM95] Tomás Feder and Rajeev Motwani. “Clique Partitions,
Graph Compression and Speeding-Up Algorithms”.
In: Journal of Computer and System Sciences 51.2 (1995),
pp. 261–272. doi: 10.1006/jcss.1995.1065.

[FPS01] Joan Feigenbaum, Christos H. Papadimitriou, and Scott
Shenker. “Sharing the Cost of Multicast Transmissions”.
In: Journal of Computer and System Sciences 63.1 (2001),
pp. 21–41. doi: 10.1006/jcss.2001.1754.

[Fel+16] Andreas Emil Feldmann, Jochen Könemann, Neil Olver,
and Laura Sanità. “On the equivalence of the bidirected
and hypergraphic relaxations for Steiner tree”. In: Math-
ematical Programming 160.1 (2016), pp. 379–406. doi: 10.
1007/s10107-016-0987-5.

[Fis+94] Matteo Fischetti, Horst W. Hamacher, Kurt Jørnsten,
and Francesco Maffioli. “Weighted k-Cardinality Trees:
Complexity and Polyhedral Structure”. In: Networks 24.1
(1994), pp. 11–21. doi: 10.1002/net.3230240103.

[FF56] Lester R. Ford and Delbert R. Fulkerson. “Maximal Flow
through a Network”. In: Canadian Journal of Mathematics
8 (1956), pp. 399–404. url: http://www.rand.org/pubs/
papers/P605/.

https://doi.org/10.1145/2543629
https://doi.org/10.1137/0204043
https://doi.org/10.1016/j.jctb.2015.05.003
https://doi.org/10.1016/j.jctb.2015.05.003
http://eudml.org/doc/149129
https://doi.org/10.1006/jcss.1995.1065
https://doi.org/10.1006/jcss.2001.1754
https://doi.org/10.1007/s10107-016-0987-5
https://doi.org/10.1007/s10107-016-0987-5
https://doi.org/10.1002/net.3230240103
http://www.rand.org/pubs/papers/P605/
http://www.rand.org/pubs/papers/P605/

244 bibliography

[FF57] Lester R. Ford and Delbert R. Fulkerson. “A simple algo-
rithm for finding maximal network flows and an appli-
cation to the Hitchcock problem”. In: Canadian Journal of
Mathematics (1957), pp. 210–218.

[FF10] Lester R. Ford and Delbert R. Fulkerson. Flows in Net-
works. Princeton, NJ, USA: Princeton University Press,
2010.

[FR83] L. R. Foulds and V. J. Rayward-Smith. “Steiner Prob-
lems in Graphs: Algorithms and Applications”. In: En-
gineering Optimization 7.1 (1983), pp. 7–16. doi: 10.1080/
03052158308960625.

[FG78] András Frank and András Gyárfás. “How to orient the
edges of a graph?” In: COMBINATORICS: 5th Hungarian
Colloquium, Keszthely, June/July 1976, Proceedings. Ed. by
András Hajnal and Vera T. Sós. Colloquia Mathematica
Societatis János Bolyai 2. Amsterdam: North Holland
Publishing Company, 1978, pp. 353–364.

[FKS84] Michael L. Fredman, János Komlós, and Endre Sze-
merédi. “Storing a Sparse Table with O(1) Worst Case
Access Time”. In: Journal of the ACM 31.3 (1984), pp. 538–
544. doi: 10.1145/828.1884.

[FS89] Michael L. Fredman and Michael E. Saks. “The Cell
Probe Complexity of Dynamic Data Structures”. In: Pro-
ceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing. Seattle, Washington, USA: ACM,
1989, pp. 345–354. doi: 10.1145/73007.73040.

[FT87] Michael L. Fredman and Robert E. Tarjan. “Fibonacci
Heaps and Their Uses in Improved Network Optimiza-
tion Algorithms”. In: Journal of the ACM 34.3 (1987),
pp. 596–615. doi: 10.1145/28869.28874.

[FW93] Michael L. Fredman and Dan E. Willard. “Surpassing the
information theoretic bound with fusion trees”. In: Jour-
nal of Computer and System Sciences 47.3 (1993), pp. 424–
436. doi: 10.1016/0022-0000(93)90040-4.

[Fun+12] Isaac Fung, Konstantinos Georgiou, Jochen Könemann,
and Malcolm Sharpe. “Efficient Algorithms for Solving
Hypergraphic Steiner Tree Relaxations in Quasi-Bipartite
Instances”. In: CoRR abs/1202.5049 (2012). arXiv: 1202.
5049.

[Gab98] Harold N. Gabow. “Algorithms for Graphic Polyma-
troids and Parametric s̄-Sets”. In: Journal of Algorithms
26.1 (1998), pp. 48–86. doi: 10.1006/jagm.1997.0904.

https://doi.org/10.1080/03052158308960625
https://doi.org/10.1080/03052158308960625
https://doi.org/10.1145/828.1884
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/28869.28874
https://doi.org/10.1016/0022-0000(93)90040-4
https://arxiv.org/abs/1202.5049
https://arxiv.org/abs/1202.5049
https://doi.org/10.1006/jagm.1997.0904

bibliography 245

[GS85] Harold N. Gabow and Matthias Stallmann. “Efficient
algorithms for graphic matroid intersection and parity”.
In: Automata, Languages and Programming. Ed. by Wil-
fried Brauer. Springer Berlin Heidelberg, 1985, pp. 210–
220.

[GT88a] Harold N. Gabow and Robert E. Tarjan. “Algorithms for
Two Bottleneck Optimization Problems”. In: Journal of
Algorithms 9.3 (1988), pp. 411–417. doi: 10.1016/0196-
6774(88)90031-4.

[GT91] Harold N. Gabow and Robert E. Tarjan. “Faster Scaling
Algorithms for General Graph Matching Problems”. In:
Journal of the ACM 38.4 (1991), pp. 815–853. doi: 10.1145/
115234.115366.

[GW92] Harold N. Gabow and Herbert H. Westermann. “Forests,
Frames, and Games: Algorithms for Matroid Sums
and Applications”. English. In: Algorithmica 7.1-6 (1992),
pp. 465–497. doi: 10.1007/BF01758774.

[GGT16] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. “Top-
k overlapping densest subgraphs”. In: Data Mining and
Knowledge Discovery 30.5 (2016), pp. 1134–1165. doi: 10.
1007/s10618-016-0464-z.

[Gal79] David Gale. “The Game of Hex and the Brouwer Fixed-
Point Theorem”. In: The American Mathematical Monthly
86.10 (1979), pp. 818–827. doi: 10.2307/2320146.

[GKT51] David Gale, Harold William Kuhn, and Albert William
Tucker. “Linear Programming and the Theory of Games”.
In: Activity Analysis of Production and Allocation. Ed. by
Tjalling C. Koopmans. Wiley, New York, 1951, pp. 317–
329.

[GGT89] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tar-
jan. “A Fast Parametric Maximum Flow Algorithm and
Applications”. In: SIAM J. Comput. 18.1 (1989), pp. 30–55.
doi: 10.1137/0218003.

[GGJ77] Michael R. Garey, Ronald L. Graham, and David S.
Johnson. “The Complexity of Computing Steiner Mini-
mal Trees”. In: SIAM Journal on Applied Mathematics 32.4
(1977), pp. 835–859. doi: 10.1137/0132072.

[GJ77] Michael R. Garey and David S. Johnson. “The Rectilinear
Steiner Tree Problem is NP-Complete”. In: SIAM Journal
on Applied Mathematics 32.4 (1977), pp. 826–834. doi: 10.
1137/0132071.

https://doi.org/10.1016/0196-6774(88)90031-4
https://doi.org/10.1016/0196-6774(88)90031-4
https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/115234.115366
https://doi.org/10.1007/BF01758774
https://doi.org/10.1007/s10618-016-0464-z
https://doi.org/10.1007/s10618-016-0464-z
https://doi.org/10.2307/2320146
https://doi.org/10.1137/0218003
https://doi.org/10.1137/0132072
https://doi.org/10.1137/0132071
https://doi.org/10.1137/0132071

246 bibliography

[GJS76] Michael R. Garey, David S. Johnson, and Larry J. Stock-
meyer. “Some simplified NP-complete graph problems”.
In: Theoretical Computer Science 1.3 (1976), pp. 237–267.
doi: 10.1016/0304-3975(76)90059-1.

[Gar96] Naveen Garg. “A 3-Approximation for the Minimum
Tree Spanning k Vertices”. In: 37th Annual Symposium
on Foundations of Computer Science, FOCS ’96, Burling-
ton, Vermont, USA, 14-16 October, 1996. 1996, pp. 302–
309. doi: 10.1109/SFCS.1996.548489.

[Gar05] Naveen Garg. “Saving an Epsilon: A 2-approximation
for the k-MST Problem in Graphs”. In: Proceedings of
the Thirty-seventh Annual ACM Symposium on Theory of
Computing. Baltimore, MD, USA: ACM, 2005, pp. 396–
402. doi: 10.1145/1060590.1060650.

[Gei+11] Ludwig Geistlinger, Gergely Csaba, Robert Küffner,
Nicola Mulder, and Ralf Zimmer. “From sets to graphs:
towards a realistic enrichment analysis of transcriptomic
systems.” In: Bioinformatics 27.13 (2011), pp. 366–373. doi:
10.1093/bioinformatics/btr228.

[GP07] George F. Georgakopoulos and Kostas Politopoulos.
“MAX-DENSITY Revisited: a Generalization and a More
Efficient Algorithm”. In: The Computer Journal 50.3 (2007),
pp. 348–356. doi: 10.1093/comjnl/bxl082.

[GP68] Edgar N. Gilbert and Henry O. Pollak. “Steiner Mini-
mal Trees”. In: SIAM Journal on Applied Mathematics 16.1
(1968), pp. 1–29. url: http://www.jstor.org/stable/
2099400.

[GM93] Michel X. Goemans and Young-Soo Myung. “A Catalog
of Steiner Tree Formulations”. In: Networks 23.1 (1993),
pp. 19–28. doi: 10.1002/net.3230230104.

[Goe+12] Michel X. Goemans, Neil Olver, Thomas Rothvoß, and
Rico Zenklusen. “Matroids and Integrality Gaps for
Hypergraphic Steiner Tree Relaxations”. In: Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of
Computing. New York, NY, USA: ACM, 2012, pp. 1161–
1176. doi: 10.1145/2213977.2214081.

[GW95] Michel X. Goemans and David P. Williamson. “A Gen-
eral Approximation Technique for Constrained Forest
Problems”. In: SIAM Journal on Computing 24.2 (1995),
pp. 296–317. doi: 10.1137/S0097539793242618.

[Gol84] Andrew V. Goldberg. Finding a Maximum Density Sub-
graph. Tech. rep. Berkeley, CA, USA: University of Cali-
fornia at Berkeley, 1984.

https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1109/SFCS.1996.548489
https://doi.org/10.1145/1060590.1060650
https://doi.org/10.1093/bioinformatics/btr228
https://doi.org/10.1093/comjnl/bxl082
http://www.jstor.org/stable/2099400
http://www.jstor.org/stable/2099400
https://doi.org/10.1002/net.3230230104
https://doi.org/10.1145/2213977.2214081
https://doi.org/10.1137/S0097539793242618

bibliography 247

[GK04] Andrew V. Goldberg and Alexander V. Karzanov. “Max-
imum Skew-symmetric Flows and Matchings”. In: Math-
ematical Programming 100.3 (2004), pp. 537–568. doi: 10.
1007/s10107-004-0505-z.

[GK97] Andrew V. Goldberg and Robert Kennedy. “Global
Price Updates Help”. In: SIAM Journal on Discrete
Mathematics 10.4 (1997), pp. 551–572. doi: 10 . 1137 /

S0895480194281185.

[GR98] Andrew V. Goldberg and Satish Rao. “Beyond the Flow
Decomposition Barrier”. In: Journal of the ACM 45.5
(1998), pp. 783–797. doi: 10.1145/290179.290181.

[GT88b] Andrew V. Goldberg and Robert E. Tarjan. “A New
Approach to the Maximum-flow Problem”. In: Journal of
the ACM 35.4 (1988), pp. 921–940. doi: 10.1145/48014.
61051.

[GT90] Andrew V. Goldberg and Robert E. Tarjan. “Finding
Minimum-Cost Circulations by Successive Approxima-
tion”. In: Mathematics of Operations Research 15.3 (1990),
pp. 430–466. url: http : / / www . jstor . org / stable /

3689990.

[GT14] Andrew V. Goldberg and Robert E. Tarjan. “Efficient
Maximum Flow Algorithms”. In: Communications of the
ACM 57.8 (2014), pp. 82–89. doi: 10.1145/2628036.

[GV08] Petr A. Golovach and Yngve Villanger. “Parameterized
Complexity for Domination Problems on Degenerate
Graphs”. In: Graph-Theoretic Concepts in Computer Science.
Ed. by Hajo Broersma, Thomas Erlebach, Tom Friedetzky,
and Daniel Paulusma. Springer Berlin Heidelberg, 2008,
pp. 195–205.

[Gon09] Daniel Gonçalves. “Covering planar graphs with forests,
one having a bounded maximum degree”. In: Journal
of Combinatorial Theory, Series B 99.2 (2009), pp. 314–322.
doi: 10.1016/j.endm.2008.06.033.

[Gor19] Dan M. Gordon. La Jolla Covering Repository. Institute for
Defense Analyses. 2019. url: https://ljcr.dmgordon.
org/cover.html.

[Grö+02] Clemens Gröpl, Stefan Hougardy, Till Nierhoff, and
Hans Jügen Prömel. “Steiner trees in uniformly quasi-
bipartite graphs”. In: Information Processing Letters 83.4
(2002), pp. 195–200. doi: 10 . 1016 / S0020 - 0190(01)

00335-0.

https://doi.org/10.1007/s10107-004-0505-z
https://doi.org/10.1007/s10107-004-0505-z
https://doi.org/10.1137/S0895480194281185
https://doi.org/10.1137/S0895480194281185
https://doi.org/10.1145/290179.290181
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
http://www.jstor.org/stable/3689990
http://www.jstor.org/stable/3689990
https://doi.org/10.1145/2628036
https://doi.org/10.1016/j.endm.2008.06.033
https://ljcr.dmgordon.org/cover.html
https://ljcr.dmgordon.org/cover.html
https://doi.org/10.1016/S0020-0190(01)00335-0
https://doi.org/10.1016/S0020-0190(01)00335-0

248 bibliography

[GL98] Roberto Grossi and Elena Lodi. “Simple planar graph
partition into three forests”. In: Discrete Applied Math-
ematics 84.1 (1998), pp. 121–132. doi: 10.1016/S0166-
218X(98)00007-9.

[Gur19] Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual. 2019. url: http://www.gurobi.com.

[GT94] Dan Gusfield and Éva Tardos. “A Faster Parametric
Minimum-Cut Algorithm”. English. In: Algorithmica 11.3
(1994), pp. 278–290. doi: 10.1007/BF01240737.

[Hak65] Seifollah L. Hakimi. “On the degrees of the vertices of a
directed graph”. In: Journal of the Franklin Institute 279.4
(1965), pp. 290–308. doi: 10.1016/0016-0032(65)90340-
6.

[Hal35] Philip Hall. “On Representatives of Subsets”. In: Journal
of the London Mathematical Society s1-10.1 (1935), pp. 26–
30. doi: 10.1112/jlms/s1-10.37.26.

[HO92] Jianxiu Hao and James B. Orlin. “A Faster Algorithm for
Finding the Minimum Cut in a Graph”. In: Proceedings
of the Third Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, 27-29 January 1992, Orlando, Florida,
USA. Ed. by Greg N. Frederickson. ACM/SIAM, 1992,
pp. 165–174. url: http://dl.acm.org/citation.cfm?
id=139404.139439.

[HW08] Godfrey H. Hardy and Edward M. Wright. An intro-
duction to the theory of numbers. 6th ed. Revised by D. R.
Heath-Brown and J. H. Silverman, With a foreword by
Andrew Wiles. Oxford University Press, Oxford, 2008.

[HS65] Juris Hartmanis and Richard E. Stearns. “On the Com-
putational Complexity of Algorithms”. In: Transactions of
the American Mathematical Society 117 (1965), pp. 285–306.
doi: 10.2307/1994208.

[Hås01] Johan Håstad. “Some Optimal Inapproximability Re-
sults”. In: Journal of the ACM 48.4 (2001), pp. 798–859.
doi: 10.1145/502090.502098.

[HW73] Carl Hierholzer and Christian Wiener. “Ueber die
Möglichkeit, einen Linienzug ohne Wiederholung und
ohne Unterbrechung zu umfahren”. In: Mathematische
Annalen 6.1 (1873), pp. 30–32. doi: 10.1007/BF01442866.

[HK56] Alan J. Hoffman and Joseph B. Kruskal. “Integral Bound-
ary Points of Convex Polyhedra”. In: Linear Inequalities
and Related Systems. Ed. by Harold W. Kuhn and Albert
W. Tucker. Princeton University Press, NJ, 1956, pp. 223–
246.

https://doi.org/10.1016/S0166-218X(98)00007-9
https://doi.org/10.1016/S0166-218X(98)00007-9
http://www.gurobi.com
https://doi.org/10.1007/BF01240737
https://doi.org/10.1016/0016-0032(65)90340-6
https://doi.org/10.1016/0016-0032(65)90340-6
https://doi.org/10.1112/jlms/s1-10.37.26
http://dl.acm.org/citation.cfm?id=139404.139439
http://dl.acm.org/citation.cfm?id=139404.139439
https://doi.org/10.2307/1994208
https://doi.org/10.1145/502090.502098
https://doi.org/10.1007/BF01442866

bibliography 249

[HK73] John E. Hopcroft and Richard M. Karp. “An n5/2 Algo-
rithm for Maximum Matchings in Bipartite Graphs”. In:
SIAM Journal on Computing 2.4 (1973), pp. 225–231. doi:
10.1137/0202019.

[HT73] John E. Hopcroft and Robert E. Tarjan. “Dividing a
Graph into Triconnected Components”. In: SIAM Jour-
nal on Computing 2.3 (1973), pp. 135–158. doi: 10.1137/
0202012.

[HT74] John E. Hopcroft and Robert E. Tarjan. “Efficient Pla-
narity Testing”. In: Journal of the ACM 21.4 (1974),
pp. 549–568. doi: 10.1145/321850.321852.

[HP99] Stefan Hougardy and Hans Jürgen Prömel. “A 1.598
Approximation Algorithm for the Steiner Problem in
Graphs”. In: Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms. Baltimore, Maryland,
USA: Society for Industrial and Applied Mathematics,
1999, pp. 448–453. url: http://dl.acm.org/citation.
cfm?id=314500.314599.

[Ide+02] Trey Ideker, Owen Ozier, Benno Schwikowski, and An-
drew F. Siegel. “Discovering regulatory and signalling
circuits in molecular interaction networks”. In: Proceed-
ings of the Tenth International Conference on Intelligent Sys-
tems for Molecular Biology, August 3-7, 2002, Edmonton,
Alberta, Canada. 2002, pp. 233–240.

[Jai01] Kamal Jain. “A Factor 2 Approximation Algorithm
for the Generalized Steiner Network Problem”. In:
Combinatorica 21.1 (2001), pp. 39–60. doi: 10 . 1007 /

s004930170004.

[JY17] Hongbi Jiang and Daqing Yang. “Decomposing a Graph
into Forests: The Nine Dragon Tree Conjecture is True”.
In: Combinatorica 37.6 (2017), pp. 1125–1137. doi: 10 .

1007/s00493-016-3390-1.

[Joh74] David S. Johnson. “Approximation Algorithms for Com-
binatorial Problems”. In: Journal of Computer and System
Sciences 9.3 (1974), pp. 256–278. doi: 10.1016/S0022-
0000(74)80044-9.

[JA97] Kurt Jörnsten and Løkketangen Arne. “Tabu search for
weighted k-cardinality trees”. In: Asia-Pacific Journal of
Operational Research 14.2 (1997), pp. 9–26.

[Juh+18] Daniel Juhl, David M. Warme, Pawel Winter, and Martin
Zachariasen. “The GeoSteiner software package for com-
puting Steiner trees in the plane: an updated computa-
tional study”. In: Mathematical Programming Computation
(2018). doi: 10.1007/s12532-018-0135-8.

https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202012
https://doi.org/10.1137/0202012
https://doi.org/10.1145/321850.321852
http://dl.acm.org/citation.cfm?id=314500.314599
http://dl.acm.org/citation.cfm?id=314500.314599
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/s00493-016-3390-1
https://doi.org/10.1007/s00493-016-3390-1
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1007/s12532-018-0135-8

250 bibliography

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. “Im-
plicit Representation of Graphs”. In: SIAM Journal on
Discrete Mathematics 5.4 (1992), pp. 596–603. doi: 10 .

1137/0405049.

[KKT95] David R. Karger, Philip N. Klein, and Robert E. Tarjan.
“A Randomized Linear-time Algorithm to Find Mini-
mum Spanning Trees”. In: Journal of the ACM 42.2 (1995),
pp. 321–328. doi: 10.1145/201019.201022.

[Kar84] Narendra Karmarkar. “A new polynomial-time algo-
rithm for linear programming”. In: Combinatorica 4.4
(1984), pp. 373–396. doi: 10.1007/BF02579150.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial
Problems”. In: Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York. 1972, pp. 85–103.

[KZ97] Marek Karpinski and Alexander Zelikovsky. “New Ap-
proximation Algorithms for the Steiner Tree Problems”.
In: Journal of Combinatorial Optimization 1.1 (1997), pp. 47–
65. doi: 10.1023/A:1009758919736.

[Kar74] Alexander Karzanov. “Determining the maximal flow in
a network by the method of preflows”. In: Soviet Mathe-
matics Doklady 15.2 (1974), pp. 434–437.

[Kar73] Alexander V. Karzanov. “O nakhozhdenii maksi-
mal’nogo potoka v setyakh spetsial’nogo vida i neko-
torykh prilozheniyakh [On finding a maximum flow
in a network with special structure and some appli-
cations, in Russian]”. In: Matematicheskie Voprosy Up-
ravleniya Proizvodstvom. Ed. by L. A. Lyusternik. Vol. 15.
Moscow State University Press, 1973, pp. 81–94.

[Kha79] Leonid G. Khachiyan. “A polynomial algorithm in linear
programming”. In: Soviet Mathematics Doklady 20 (1979),
pp. 191–194.

[Kho06] Subhash Khot. “Ruling Out PTAS for Graph Min-
Bisection, Dense k-Subgraph, and Bipartite Clique”. In:
SIAM Journal on Computing 36.4 (2006), pp. 1025–1071.
doi: 10.1137/S0097539705447037.

[KS09a] Samir Khuller and Barna Saha. “On Finding Dense Sub-
graphs”. In: Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July
5-12, 2009, Proceedings, Part I. 2009, pp. 597–608. doi:
10.1007/978-3-642-02927-1_50.

https://doi.org/10.1137/0405049
https://doi.org/10.1137/0405049
https://doi.org/10.1145/201019.201022
https://doi.org/10.1007/BF02579150
https://doi.org/10.1023/A:1009758919736
https://doi.org/10.1137/S0097539705447037
https://doi.org/10.1007/978-3-642-02927-1_50

bibliography 251

[KS09b] Samir Khuller and Barna Saha. “On Finding Dense Sub-
graphs”. Unpublished. 2009. url: http://www.cs.umd.
edu/users/samir/grant/journal-combinatorica.pdf.

[Kim+13] Seog-Jin Kim, Alexandr V. Kostochka, Douglas B. West,
Hehui Wu, and Xuding Zhu. “Decomposition of Sparse
Graphs into Forests and a Graph with Bounded Degree”.
In: Journal of Graph Theory 74.4 (2013), pp. 369–391. doi:
10.1002/jgt.21711.

[KM72] Victor Klee and George J. Minty. “How good is the sim-
plex algorithm?” In: Inequalities, III (Proc. Third Sympos.,
Univ. California, Los Angeles, Calif., 1969; dedicated to the
memory of Theodore S. Motzkin). Ed. by Oved Shisha. Aca-
demic Press, New York, 1972, pp. 159–175.

[KM98] Thorsten Koch and Alexander Martin. “Solving Steiner
tree problems in graphs to optimality”. In: Networks
32.3 (1998), pp. 207–232. doi: 10.1002/(SICI)1097-

0037(199810)32:3<207::AID-NET5>3.0.CO;2-O.

[KPT11] Jochen Könemann, David Pritchard, and Kunlun Tan. “A
partition-based relaxation for Steiner trees”. In: Mathe-
matical Programming 127.2 (2011), pp. 345–370. doi: 10.
1007/s10107-009-0289-2.

[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. “Higher
Lower Bounds from the 3SUM Conjecture”. In: Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016. Ed. by Robert Krauthgamer. SIAM,
2016, pp. 1272–1287. doi: 10.1137/1.9781611974331.
ch89. url: https : / / doi . org / 10 . 1137 / 1 .

9781611974331.ch89.

[KV18] Bernhard Korte and Jens Vygen. Combinatorial Optimiza-
tion: Theory and Algorithms. 6th. Springer Publishing
Company, Incorporated, 2018.

[KP94] Guy Kortsarz and David Peleg. “Generating Sparse 2-
spanners”. In: Journal of Algorithms 17.2 (1994), pp. 222–
236. doi: 10.1006/jagm.1994.1032.

[Kow06] Łukasz Kowalik. “Approximation Scheme for Lowest
Outdegree Orientation and Graph Density Measures”.
English. In: Algorithms and Computation. Ed. by Tetsuo
Asano. Vol. 4288. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, pp. 557–566. doi: 10.
1007/11940128_56.

[Law76] Eugene L. Lawler. Combinatorial Optimization: Networks
and Matroids. Holt, Rinehart and Winston, 1976. Chap. 4,
pp. 125–127.

http://www.cs.umd.edu/users/samir/grant/journal-combinatorica.pdf
http://www.cs.umd.edu/users/samir/grant/journal-combinatorica.pdf
https://doi.org/10.1002/jgt.21711
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1007/s10107-009-0289-2
https://doi.org/10.1007/s10107-009-0289-2
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1007/11940128_56
https://doi.org/10.1007/11940128_56

252 bibliography

[LS14] Yin T. Lee and Aaron Sidford. “Path Finding Methods
for Linear Programming: Solving Linear Programs in
Õ(
√

rank) Iterations and Faster Algorithms for Maxi-
mum Flow”. In: 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science. 2014, pp. 424–433. doi:
10.1109/FOCS.2014.52.

[LW10] Christoph Lenzen and Roger Wattenhofer. “Minimum
Dominating Set Approximation in Graphs of Bounded
Arboricity”. In: Distributed Computing, 24th International
Symposium, DISC 2010, Cambridge, MA, USA, September
13-15, 2010. Proceedings. Ed. by Nancy A. Lynch and
Alexander A. Shvartsman. Vol. 6343. Lecture Notes in
Computer Science. Springer, 2010, pp. 510–524. doi: 10.
1007/978-3-642-15763-9_48.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford
Large Letwork Dataset Collection.
http://snap.stanford.edu/data. 2014.

[Lev73] Leonid A. Levin. “Universal sequential search problems
[in Russian]”. In: Problems of Information Transmission 9.3
(1973), pp. 265–266.

[Lew78] John M. Lewis. “On the Complexity of the Maximum
Subgraph Problem”. In: Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing. San Diego, Cal-
ifornia, USA: ACM, 1978, pp. 265–274. doi: 10.1145/
800133.804356.

[Lic82] David Lichtenstein. “Planar Formulae and Their Uses”.
In: SIAM Journal on Computing 11.2 (1982), pp. 329–343.
doi: 10.1137/0211025.

[Lip10] Richard J. Lipton. The P=NP question and Gödel’s lost letter.
New York: Springer, 2010.

[Lju04] Ivana Ljubić. “Exact and memetic algorithms for two net-
work design problems”. PhD thesis. Technische Univer-
sität Wien, 2004. url: https://www.ac.tuwien.ac.at/
files/archive/www.ads.tuwien.ac.at/publications/

bib/pdf/ljubicPhD.pdf.

[Lju+06] Ivana Ljubić, René Weiskircher, Ulrich Pferschy, Gun-
nar W. Klau, Petra Mutzel, and Matteo Fischetti. “An
Algorithmic Framework for the Exact Solution of the
Prize-Collecting Steiner Tree Problem”. In: Mathematical
Programming 105.2-3 (2006), pp. 427–449. doi: 10.1007/
s10107-005-0660-x.

[Lov75] László Lovász. “On the ratio of optimal integral and
fractional covers”. In: Discrete Mathematics 13.4 (1975),
pp. 383–390. doi: 10.1016/0012-365X(75)90058-8.

https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1007/978-3-642-15763-9_48
https://doi.org/10.1007/978-3-642-15763-9_48
http://snap.stanford.edu/data
https://doi.org/10.1145/800133.804356
https://doi.org/10.1145/800133.804356
https://doi.org/10.1137/0211025
https://www.ac.tuwien.ac.at/files/archive/www.ads.tuwien.ac.at/publications/bib/pdf/ljubicPhD.pdf
https://www.ac.tuwien.ac.at/files/archive/www.ads.tuwien.ac.at/publications/bib/pdf/ljubicPhD.pdf
https://www.ac.tuwien.ac.at/files/archive/www.ads.tuwien.ac.at/publications/bib/pdf/ljubicPhD.pdf
https://doi.org/10.1007/s10107-005-0660-x
https://doi.org/10.1007/s10107-005-0660-x
https://doi.org/10.1016/0012-365X(75)90058-8

bibliography 253

[LZ93] Dmitrii D. Lozovanu and Alexander Zelikovsky. “Min-
imal and bounded trees”. In: Tezele Congresului XVIII
al Academiei Romano-Americane. Chişinău, Moldova:
American-Romanian Academy of Arts and Sciences,
1993, pp. 25–26.

[Luc82] Édouard Lucas. Récréations mathématiques [Mathemati-
cal Recreations, in French] 1. Gauthier-Villars, 1882.

[LR01] Abilio Lucena and Mauricio G. C. Resende. “Generating
lower bounds for the prize collecting Steiner problem
in graphs”. In: Electronic Notes in Discrete Mathematics
7 (2001). Brazilian Symposium on Graphs, Algorithms
and Combinatorics, pp. 70–73. doi: 10.1016/S1571-

0653(04)00227-6.

[Ma+17] Xiuli Ma, Guangyu Zhou, Jingbo Shang, Jingjing Wang,
Jian Peng, and Jiawei Han. “Detection of Complexes
in Biological Networks Through Diversified Dense Sub-
graph Mining”. In: Journal of Computational Biology 24.9
(2017), pp. 923–941. doi: 10.1089/cmb.2017.0037.

[Mảd13] Aleksander Mảdry. “Navigating Central Path with Elec-
trical Flows: From Flows to Matchings, and Back”. In:
54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA. 2013, pp. 253–262. doi: 10.1109/FOCS.2013.35.

[Mảd16] Aleksander Mảdry. “Computing Maximum Flow with
Augmenting Electrical Flows”. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, New Brunswick, New Jersey, USA. 2016,
pp. 593–602. doi: 10.1109/FOCS.2016.70.

[MB83] David W. Matula and Leland L. Beck. “Smallest-last Or-
dering and Clustering and Graph Coloring Algorithms”.
In: J. ACM 30.3 (1983), pp. 417–427. doi: 10.1145/2402.
322385.

[McG+15a] Andrew McGregor, David Tench, Sofya Vorotnikova,
and Hoa T. Vu. “Densest Subgraph in Dynamic Graph
Streams”. In: Mathematical Foundations of Computer Sci-
ence 2015 - 40th International Symposium, MFCS 2015, Mi-
lan, Italy, August 24-28, 2015, Proceedings, Part II. 2015,
pp. 472–482. doi: 10.1007/978-3-662-48054-0_39.

[McG+15b] Andrew McGregor, David Tench, Sofya Vorotnikova,
and Hoa T. Vu. “Densest Subgraph in Dynamic Graph
Streams”. In: CoRR abs/1506.04417 (2015). arXiv: 1506.
04417.

https://doi.org/10.1016/S1571-0653(04)00227-6
https://doi.org/10.1016/S1571-0653(04)00227-6
https://doi.org/10.1089/cmb.2017.0037
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/2402.322385
https://doi.org/10.1007/978-3-662-48054-0_39
https://arxiv.org/abs/1506.04417
https://arxiv.org/abs/1506.04417

254 bibliography

[MV80] Silvio Micali and Vijay V. Vazirani. “An O(
√︁
|V||E|)

algorithm for finding maximum matching in general
graphs”. In: 21st Annual Symposium on Foundations of
Computer Science (sfcs 1980). 1980, pp. 17–27. doi: 10.

1109/SFCS.1980.12.

[Mil+11] Tijana Milenković, Vesna Memišević, Anthony Bonato,
and Nataša Pržulj. “Dominating Biological Networks”.
In: PLOS ONE 6.8 (2011), pp. 1–12. doi: 10 . 1371 /

journal.pone.0023016.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and
computing – randomized algorithms and probabilistic anal-
ysis. Cambridge University Press, 2005.

[Mon+12] Mickael Montassier, Patrice Ossona de Mendez, André
Raspaud, and Xuding Zhu. “Decomposing a graph into
forests”. In: Journal of Combinatorial Theory, Series B 102.1
(2012), pp. 38–52. doi: 10.1016/j.jctb.2011.04.001.

[Nas61] Crispin St. J. A. Nash-Williams. “Edge-Disjoint Spanning
Trees of Finite Graphs”. In: Journal of the London Math-
ematical Society 36.1 (1961), pp. 445–450. doi: 10.1112/
jlms/s1-36.1.445.

[Nas64] Crispin St. J. A. Nash-Williams. “Decomposition of Finite
Graphs Into Forests”. In: Journal of the London Mathemat-
ical Society 39.1 (1964), pp. 12–12. doi: 10.1112/jlms/s1-
39.1.12.

[Nas+17] Muhammad A. U. Nasir, Aristides Gionis, Gianmarco De
Francisci Morales, and Sarunas Girdzijauskas. “Fully Dy-
namic Algorithm for Top-k Densest Subgraphs”. In: Pro-
ceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November
06 - 10, 2017. 2017, pp. 1817–1826. doi: 10.1145/3132847.
3132966.

[Naz+16] Maryam Nazarieh, Andreas Wiese, Thorsten Will, Mo-
hamed Hamed, and Volkhard Helms. “Identification of
key player genes in gene regulatory networks”. In: BMC
Systems Biology 10.1 (2016), p. 88. doi: 10.1186/s12918-
016-0329-5.

[Neu38] John von Neumann. “Über ein ökonomisches Glei-
chungssystem und eine Verallgemeinerung des Brouwer-
schen Fixpunktsatzes [On an economic system of equa-
tions and a generalization of the Brouwer fixed-point the-
orem, in German]”. In: Ergebnisse eines Mathematischen
Seminars. Ed. by Karl Menger. Vienna, 1938.

https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1371/journal.pone.0023016
https://doi.org/10.1371/journal.pone.0023016
https://doi.org/10.1016/j.jctb.2011.04.001
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.1145/3132847.3132966
https://doi.org/10.1145/3132847.3132966
https://doi.org/10.1186/s12918-016-0329-5
https://doi.org/10.1186/s12918-016-0329-5

bibliography 255

[Neu63] John von Neumann. “Discussion of a Maximum Prob-
lem”. In: John von Neumann, Collected Works. Ed. by A. H.
Taub. Vol. VI. Pergamon Press, Oxford, 1963, pp. 89–95.

[Orl13] James B. Orlin. “Max Flows in O(nm) Time, or Better”.
In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing. Palo Alto, California, USA: ACM,
2013, pp. 765–774. doi: 10.1145/2488608.2488705.

[Oxl06] James G. Oxley. Matroid Theory (Oxford Graduate Texts in
Mathematics). New York, NY, USA: Oxford University
Press, Inc., 2006.

[PD06] Mihai Pătras, cu and Erik D. Demaine. “Logarithmic
Lower Bounds in the Cell-Probe Model”. In: SIAM Jour-
nal on Computing 35.4 (2006), pp. 932–963. doi: 10.1137/
S0097539705447256.

[Pay86] Charles Payan. “Graphes Équilibrés et Arboricité Ra-
tionnelle [Balanced graphs and fractional arboricity, in
French]”. In: European Journal of Combinatorics 7.3 (1986),
pp. 263–270. doi: 10.1016/S0195-6698(86)80032-4.

[PI79] William H. Payne and Frederick M. Ives. “Combina-
tion Generators”. In: ACM Transactions on Mathematical
Software 5.2 (1979), pp. 163–172. doi: 10.1145/355826.
355830.

[Pét35] Rózsa Péter. “Konstruktion nichtrekursiver Funktionen
[Construction of nonrecursive functions, in German]”.
In: Mathematische Annalen 111.1 (1935), pp. 42–60. doi:
10.1007/BF01472200.

[PR02] Seth Pettie and Vijaya Ramachandran. “An Optimal Min-
imum Spanning Tree Algorithm”. In: Journal of the ACM
49.1 (2002), pp. 16–34. doi: 10.1145/505241.505243.

[PQ82] Jean-Claude Picard and Maurice Queyranne. “A Net-
work Flow Solution to Some Nonlinear 0-1 Program-
ming Problems, with Applications to Graph Theory”.
In: Networks 12.2 (1982), pp. 141–159. doi: 10.1002/net.
3230120206.

[PST91] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. “Fast
approximation algorithms for fractional packing and cov-
ering problems”. In: Proceedings 32nd Annual Symposium
of Foundations of Computer Science. 1991, pp. 495–504. doi:
10.1109/SFCS.1991.185411.

[PD01] Tobias Polzin and Siavash Vahdati Daneshmand. “A com-
parison of Steiner tree relaxations”. In: Discrete Applied
Mathematics 112.1 (2001). Combinatorial Optimization
Symposium, Selected Papers, pp. 241–261. doi: 10.1016/
S0166-218X(00)00318-8.

https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.1016/S0195-6698(86)80032-4
https://doi.org/10.1145/355826.355830
https://doi.org/10.1145/355826.355830
https://doi.org/10.1007/BF01472200
https://doi.org/10.1145/505241.505243
https://doi.org/10.1002/net.3230120206
https://doi.org/10.1002/net.3230120206
https://doi.org/10.1109/SFCS.1991.185411
https://doi.org/10.1016/S0166-218X(00)00318-8
https://doi.org/10.1016/S0166-218X(00)00318-8

256 bibliography

[PD03] Tobias Polzin and Siavash Vahdati Daneshmand. “On
Steiner trees and minimum spanning trees in hy-
pergraphs”. In: Operations Research Letters 31.1 (2003),
pp. 12–20. doi: 10.1016/S0167-6377(02)00185-2.

[Pou90] Johannes A. La Poutré. “New Techniques for the Union-
Find Problems”. In: Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, 22-24 January
1990, San Francisco, California, USA. Ed. by David S. John-
son. SIAM, 1990, pp. 54–63. url: http://dl.acm.org/
citation.cfm?id=320176.320182.

[PS02] Hans Jürgen Prömel and Angelika Steger. The Steiner Tree
Problem: A Tour through Graphs, Algorithms, and Complex-
ity. Advanced Lectures in Mathematics. Friedr. Vieweg
& Sohn Verlagsgesellschaft, 2002. doi: 10.1007/978-3-
322-80291-0.

[RV95] Sridhar Rajagopalan and Vijay V. Vazirani. “Logarithmic
approximation of minimum weight k trees”. Unpub-
lished manuscript. 1995.

[RV99] Sridhar Rajagopalan and Vijay V. Vazirani. “On the
Bidirected Cut Relaxation for the Metric Steiner Tree
Problem”. In: Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms. Baltimore, Maryland,
USA: Society for Industrial and Applied Mathematics,
1999, pp. 742–751. url: http://dl.acm.org/citation.
cfm?id=314500.314909.

[Rav+96] R. Ravi, Ravi Sundaram, Madhav V. Marathe, Daniel
J. Rosenkrantz, and Sekharipuram S. Ravi. “Spanning
Trees – Short or Small”. In: SIAM Journal on Discrete
Mathematics 9.2 (1996), pp. 178–200. doi: 10 . 1137 /

S0895480194266331.

[Ray83] Victor J. Rayward-Smith. “The computation of nearly
minimal Steiner trees in graphs”. In: International Journal
of Mathematical Education in Science and Technology 14.1
(1983), pp. 15–23. doi: 10.1080/0020739830140103.

[RK19] Daniel Rehfeldt and Thorsten Koch. “Combining NP-
Hard Reduction Techniques and Strong Heuristics in an
Exact Algorithm for the Maximum-Weight Connected
Subgraph Problem”. In: SIAM Journal on Optimization
29.1 (2019), pp. 369–398. doi: 10.1137/17M1145963.

[RKM19] Daniel Rehfeldt, Thorsten Koch, and Stephen J. Maher.
“Reduction techniques for the prize collecting Steiner tree
problem and the maximum-weight connected subgraph
problem”. In: Networks 73.2 (2019), pp. 206–233. doi: 10.
1002/net.21857.

https://doi.org/10.1016/S0167-6377(02)00185-2
http://dl.acm.org/citation.cfm?id=320176.320182
http://dl.acm.org/citation.cfm?id=320176.320182
https://doi.org/10.1007/978-3-322-80291-0
https://doi.org/10.1007/978-3-322-80291-0
http://dl.acm.org/citation.cfm?id=314500.314909
http://dl.acm.org/citation.cfm?id=314500.314909
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1137/S0895480194266331
https://doi.org/10.1080/0020739830140103
https://doi.org/10.1137/17M1145963
https://doi.org/10.1002/net.21857
https://doi.org/10.1002/net.21857

bibliography 257

[RS14] Christian Reiher and Lisa Sauermann. “Nash-Williams’
theorem on decomposing graphs into forests”. In:
Mathematika 60.1 (2014), pp. 32–36. doi: 10 . 1112 /

S0025579313000119.

[Rhy70] John M. W. Rhys. “A Selection Problem of Shared Fixed
Costs and Network Flows”. In: Management Science 17.3
(1970), pp. 200–207. doi: 10.1287/mnsc.17.3.200.

[RZ00] Gabriel Robins and Alexander Zelikovsky. “Improved
Steiner Tree Approximation in Graphs”. In: Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms. San Francisco, California, USA: Society for
Industrial and Applied Mathematics, 2000, pp. 770–779.
url: http://dl.acm.org/citation.cfm?id=338219.
338638.

[RZ05] Gabriel Robins and Alexander Zelikovsky. “Tighter
Bounds for Graph Steiner Tree Approximation”. In:
SIAM Journal on Discrete Mathematics 19.1 (2005), pp. 122–
134. doi: 10.1137/S0895480101393155.

[Sah+10] Barna Saha, Allison Hoch, Samir Khuller, Louiqa
Raschid, and Xiao-Ning Zhang. “Dense Subgraphs
with Restrictions and Applications to Gene Annota-
tion Graphs”. In: Research in Computational Molecular
Biology, 14th Annual International Conference, RECOMB
2010, Lisbon, Portugal, April 25-28, 2010. Proceedings. 2010,
pp. 456–472. doi: 10.1007/978-3-642-12683-3_30.

[SU13] Edward R. Scheinerman and Daniel H. Ullman. Frac-
tional Graph Theory: A Rational Approach to the Theory of
Graphs. Minola, N.Y.: Dover Publications, 2013.

[Sch90] Walter Schnyder. “Embedding Planar Graphs on the
Grid”. In: Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms. San Francisco, Cali-
fornia, USA: Society for Industrial and Applied Math-
ematics, 1990, pp. 138–148. url: http://dl.acm.org/
citation.cfm?id=320176.320191.

[Sch99] Alexander Schrijver. Theory of Linear and Integer program-
ming. Wiley-Interscience series in discrete mathematics
and optimization. Wiley, 1999.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. 4th ed.
Addison-Wesley, 2011.

[Sey79] Paul D. Seymour. “On Multi-Colourings of Cubic
Graphs, and Conjectures of Fulkerson and Tutte”. In:
Proceedings of the London Mathematical Society s3-38.3
(1979), pp. 423–460. doi: 10.1112/plms/s3-38.3.423.

https://doi.org/10.1112/S0025579313000119
https://doi.org/10.1112/S0025579313000119
https://doi.org/10.1287/mnsc.17.3.200
http://dl.acm.org/citation.cfm?id=338219.338638
http://dl.acm.org/citation.cfm?id=338219.338638
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1007/978-3-642-12683-3_30
http://dl.acm.org/citation.cfm?id=320176.320191
http://dl.acm.org/citation.cfm?id=320176.320191
https://doi.org/10.1112/plms/s3-38.3.423

258 bibliography

[Sho77] Naum Z. Shor. “Cut-Off Method with Space Extension
in Convex Programming Problems”. In: Cybernetics 13

(1977), pp. 94–65.

[Sim72] José M. S. Simões-Pereira. “On subgraphs as matroid
cells”. In: Mathematische Zeitschrift 127.4 (1972), pp. 315–
322. doi: 10.1007/BF01111390.

[Sin00] Amitabh Sinha. “Steiner Trees: First Summer Paper for
the PhD program at GSIA”. 2000.

[ST81] Daniel D. Sleator and Robert E. Tarjan. “A Data Struc-
ture for Dynamic Trees”. In: Proceedings of the 13th An-
nual ACM Symposium on Theory of Computing, May 11-13,
1981, Milwaukee, Wisconsin, USA. 1981, pp. 114–122. doi:
10.1145/800076.802464.

[ST83] Daniel D. Sleator and Robert Endre Tarjan. “A Data
Structure for Dynamic Trees”. In: J. Comput. Syst. Sci. 26.3
(1983), pp. 362–391. doi: 10.1016/0022-0000(83)90006-
5.

[Soa16] Robert I. Soare. Turing Computability – Theory and Ap-
plications. Theory and Applications of Computability.
Springer, 2016. doi: 10.1007/978-3-642-31933-4.

[SG10] Mauro Sozio and Aristides Gionis. “The community-
search problem and how to plan a successful cocktail
party”. In: Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010. 2010, pp. 939–948.
doi: 10.1145/1835804.1835923.

[Sub+05] Aravind Subramanian et al. “Gene set enrichment anal-
ysis: A knowledge-based approach for interpreting
genome-wide expression profiles”. In: Proceedings of the
National Academy of Sciences 102.43 (2005), pp. 15545–
15550. doi: 10.1073/pnas.0506580102.

[Sud27] Gabriel Sudan. “Sur le nombre transfini ωω [On the
transfinite number ωω, in French]”. In: Bulletin mathéma-
tique de la Société Roumaine des Sciences 30.1 (1927), pp. 11–
30. url: http://www.jstor.org/stable/43769875.

[SW68] George Szekeres and Herbert S. Wilf. “An inequality
for the chromatic number of a graph”. In: Journal of
Combinatorial Theory 4.1 (1968), pp. 1–3. doi: 10.1016/
S0021-9800(68)80081-X.

[Tar75] Robert E. Tarjan. “Efficiency of a Good But Not Linear
Set Union Algorithm”. In: Journal of the ACM 22.2 (1975),
pp. 215–225. doi: 10.1145/321879.321884.

https://doi.org/10.1007/BF01111390
https://doi.org/10.1145/800076.802464
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1073/pnas.0506580102
http://www.jstor.org/stable/43769875
https://doi.org/10.1016/S0021-9800(68)80081-X
https://doi.org/10.1016/S0021-9800(68)80081-X
https://doi.org/10.1145/321879.321884

bibliography 259

[Tar79] Robert E. Tarjan. “A class of algorithms which require
nonlinear time to maintain disjoint sets”. In: Journal of
Computer and System Sciences 18.2 (1979), pp. 110–127.
doi: 10.1016/0022-0000(79)90042-4.

[TW07] Robert E. Tarjan and Renato F. Werneck. “Dynamic Trees
in Practice”. In: Experimental Algorithms. Ed. by Camil
Demetrescu. Springer Berlin Heidelberg, 2007, pp. 80–
93.

[Thi03] Martin Thimm. “On the approximability of the Steiner
tree problem”. In: Theoretical Computer Science 295.1
(2003). Mathematical Foundations of Computer Science,
pp. 387–402. doi: 10.1016/S0304-3975(02)00414-0.

[TG16] Bio Mikaila Toko Worou and Jérôme Galtier. “Fast ap-
proximation for computing the fractional arboricity and
extraction of communities of a graph”. In: Discrete Ap-
plied Mathematics 213 (2016), pp. 179–195. doi: 10.1016/
j.dam.2014.10.023.

[Tom76] Nobuaki Tomizawa. “Strongly irreducible matroids and
principal partition of a matroid (in Japanese)”. In: Trans-
actions of the Institute of Electronics and Communications
Engineers of Japan. Vol. 59A. 1976, pp. 83–91.

[Tri93] Eberhard Triesch. Halving graphs is NP-complete. Working
paper 93 790. Research Institute for Discrete Mathemat-
ics, University of Bonn, 1993.

[Tso+13] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides
Gionis, Francesco Gullo, and Maria A. Tsiarli. “Denser
than the Densest Subgraph: Extracting Optimal Quasi-
Cliques with Quality Guarantees”. In: The 19th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2013, Chicago, IL, USA, August
11-14, 2013. 2013, pp. 104–112. doi: 10.1145/2487575.
2487645.

[Tur36] Alan M. Turing. “On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem”. In: Proceedings
of the London Mathematical Society 2.42 (1936), pp. 230–
265.

[Tut65] William T. Tutte. “Lectures on matroids”. In: Journal of
Research of the National Bureau of Standards, B 69 (1965),
pp. 1–47.

[VKP12] Elena Valari, Maria Kontaki, and Apostolos N. Pa-
padopoulos. “Discovery of Top-k Dense Subgraphs in
Dynamic Graph Collections”. In: Scientific and Statisti-
cal Database Management - 24th International Conference,

https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1016/S0304-3975(02)00414-0
https://doi.org/10.1016/j.dam.2014.10.023
https://doi.org/10.1016/j.dam.2014.10.023
https://doi.org/10.1145/2487575.2487645
https://doi.org/10.1145/2487575.2487645

260 bibliography

SSDBM 2012, Chania, Crete, Greece, June 25-27, 2012. Pro-
ceedings. 2012, pp. 213–230. doi: 10.1007/978-3-642-
31235-9_14.

[Vaz01] Vijay V. Vazirani. Approximation algorithms. Springer,
2001. doi: 10.1007/978-3-662-04565-7.

[Ven04] Venkat Venkateswaran. “Minimizing maximum inde-
gree”. In: Discrete Applied Mathematics 143.1–3 (2004),
pp. 374–378. doi: 10.1016/j.dam.2003.07.007.

[War98] David M. Warme. “Spanning Trees in Hypergraphs with
Applications to Steiner Trees”. AAI9840474. PhD thesis.
Charlottesville, VA, USA: University of Virginia, 1998.
doi: 10.18130/V3ZG4B.

[Wer06] Renato F. Werneck. “Design and Analysis of Data Struc-
tures for Dynamic Trees”. PhD thesis. Princeton Uni-
versity, 2006. url: https://www.cs.princeton.edu/
research/techreps/TR-750-06.

[Wes88] Herbert H. Westermann. “Efficient Algorithms For Ma-
troid Sums”. PhD thesis. USA: University of Colorado
Boulder, 1988.

[Whi88] Walter Whiteley. “The Union of Matroids and the Rigid-
ity of Frameworks”. In: SIAM Journal on Discrete Mathe-
matics 1.2 (1988), pp. 237–255. doi: 10.1137/0401025.

[Whi35] Hassler Whitney. “On the Abstract Properties of Linear
Dependence”. In: American Journal of Mathematics 57.3
(1935), pp. 509–533. doi: 10.2307/2371182.

[Won84] Richard T. Wong. “A dual ascent approach for Steiner
tree problems on a directed graph”. In: Mathematical
Programming 28.3 (1984), pp. 271–287. doi: 10.1007/

BF02612335.

[Yan78] Mihalis Yannakakis. “Node-and Edge-deletion NP-
complete Problems”. In: Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing. San Diego, Cal-
ifornia, USA: ACM, 1978, pp. 253–264. doi: 10.1145/
800133.804355.

[Zas82] Thomas Zaslavsky. “Bicircular Geometry and the Lattice
of Forests of a Graph”. In: The Quarterly Journal of Math-
ematics 33.4 (1982), pp. 493–511. doi: 10.1093/qmath/33.
4.493.

[Zha+08] Xing-Ming Zhao, Rui-Sheng Wang, Luonan Chen, and
Kazuyuki Aihara. “Uncovering signal transduction net-
works from high-throughput data by integer linear pro-
gramming”. In: Nucleic Acids Research 36.9 (2008), e48–
e48. doi: 10.1093/nar/gkn145.

https://doi.org/10.1007/978-3-642-31235-9_14
https://doi.org/10.1007/978-3-642-31235-9_14
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1016/j.dam.2003.07.007
https://doi.org/10.18130/V3ZG4B
https://www.cs.princeton.edu/research/techreps/TR-750-06
https://www.cs.princeton.edu/research/techreps/TR-750-06
https://doi.org/10.1137/0401025
https://doi.org/10.2307/2371182
https://doi.org/10.1007/BF02612335
https://doi.org/10.1007/BF02612335
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1093/qmath/33.4.493
https://doi.org/10.1093/qmath/33.4.493
https://doi.org/10.1093/nar/gkn145

bibliography 261

[Zus72] Konrad Zuse. Der Plankalkül [in German]. Vol. 63.
Berichte der Gesellschaft für Mathematik und Daten-
verarbeitung. Gesellschaft für Mathematik und Daten-
verarbeitung, 1972.

	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Historical Background and Motivation
	1.2 Structure and Outline of the Thesis
	1.3 Collaboration and Publications

	2 Preliminaries
	2.1 Basic Definitions
	2.1.1 Set-Theoretic Foundations
	2.1.2 Propositional Calculus

	2.2 Graphs
	2.2.1 Vertices and Edges
	2.2.2 Undirected and Simple Graphs
	2.2.3 Adjacency and Incidence
	2.2.4 Degrees and Orientations
	2.2.5 Subgraphs, Induced Subgraphs, and Matchings
	2.2.6 Paths, Cycles, and Connected Components
	2.2.7 Trees and Planarity

	2.3 Asymptotics
	2.4 Probability Theory
	2.4.1 The Coupon Collector Problem

	2.5 Algorithms and Machine Models
	2.6 Complexity Classes
	2.7 Approximation Algorithms
	2.8 Breadth-First and Depth-First Search
	2.9 Linear Algebra
	2.10 Matroid Theory
	2.11 Linear Programming
	2.11.1 Linear Programs and the Canonical Form
	2.11.2 Polyhedra and Extreme Points
	2.11.3 Duality
	2.11.4 Total Unimodularity
	2.11.5 Algorithms to Solve Linear Programs
	2.11.6 Integer Linear Programs
	2.11.7 Branch-and-Bound and Branch-and-Cut

	2.12 The Maximum Flow Problem
	2.12.1 Flows as Linear Programs
	2.12.2 The Minimum Cut Problem
	2.12.3 Maximum Flows by Augmenting Paths
	2.12.4 Flow Algorithms and Their Runtimes

	2.13 Dinitz's Algorithm
	2.14 Almost Unit Capacity Networks
	2.15 Dinitz's Algorithm on AUC Networks

	3 The Densest Subgraph Problem
	3.1 Definition and Properties
	3.2 Bounds on the Maximum Density
	3.3 Algorithms for the Densest Subgraph Problem
	3.3.1 0-1 Fractional Programming
	3.3.2 The Provisioning Problem
	3.3.3 Goldberg's Method

	3.4 Integral Test Values and Smaller Search Intervals
	3.5 Linear Programs for the Densest Subgraph Problem
	3.6 The Bipartite Orientation Network
	3.7 Streaming Algorithms

	4 The Orientation Problem
	4.1 The Re-Orientation Algorithm
	4.2 Kowalik's Approximation Scheme
	4.3 Applications and Generalizations

	5 Balanced Binary Search
	6 Accelerated Binary Search
	6.1 Fractional Orientations
	6.2 Bottleneck Maximum Cardinality Matching

	7 Constant-factor Approximations
	7.1 The Greedy Algorithm
	7.2 The Algorithm of Asahiro et al.
	7.3 Kowalik's Scheme for Fixed ε

	8 Arboricity and Pseudoarboricity
	8.1 Forests and Pseudoforests
	8.2 Matroid Partitioning and Covering Numbers
	8.3 Runtimes for Computing the (Fractional) Arboricity
	8.4 Bounds for Arboricity and Pseudoarboricity

	9 Conversion of Pseudoforests Into Forests
	9.1 Conversion by Divide-and-Conquer
	9.2 Linear-Time Conversions for Small k
	9.2.1 A Linear-Time 5/3-Conversion
	9.2.2 A Linear-Time 3/2-Conversion
	9.2.3 A Linear-Time 4/3-Conversion
	9.2.4 The Nine Dragon Tree Theorem
	9.2.5 An Application to Planar Graphs
	9.2.6 Partitioning a Planar Graph into Three Forests

	10 A Constructive Arboricity Approximation Scheme
	10.1 The Surplus Graph
	10.2 Exchanging Edges on Cycles
	10.3 Finding the Exchange Edge

	11 Preprocessing Orientations
	12 Experimental Comparisons for the Orientation Problem
	12.1 Related Work
	12.2 Selection of Algorithms
	12.3 LP Solver and Hardware Configuration
	12.4 Input Graphs
	12.5 Results

	13 Problems Involving Connected Subgraphs
	14 The k-Cardinality Tree Problem
	14.1 Integer Linear Programs
	14.1.1 Subtour Elimination Constraints
	14.1.2 A Formulation Based on the Maximum Density
	14.1.3 An MILP Based on Orientations
	14.1.4 Additional Cuts

	15 Experimental Comparison for k-Cardinality Trees
	15.1 Formulations Selected for Comparison
	15.2 Input Data, Machine Configuration, and Solver Settings
	15.3 Results

	16 The Steiner Tree Problem
	16.1 Geometric Steiner Tree Problems
	16.2 The Steiner Tree Problem in Graphs
	16.3 NP-Completeness and Special Cases
	16.4 Overview of Approximation Algorithms
	16.5 The Bidirected Cut Relaxation
	16.6 The Hypergraphic Relaxation

	17 Iterative Randomized Rounding
	17.1 The Algorithm of Byrka et al.
	17.2 Witness Tree Distributions
	17.3 Quasi-Bipartite and Claw-Free Instances

	18 Integrality Gap Lower Bounds
	18.1 Goemans's Instance Family
	18.2 Instances Based on Set Cover
	18.3 Entanglement
	18.3.1 Implementation

	19 Further Variants of the Steiner Tree Problem
	19.1 The Prize-Collecting Steiner Tree Problem
	19.2 The Maximum Weight Connected Subgraph Problem
	19.3 Preprocessing Rules for MWCS
	19.4 Algorithms for MWCS and its Variants

	20 Conclusion and Outlook
	20.1 Problems Solvable in Polynomial Time
	20.2 NP-Complete Problems

	 Bibliography

